MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Multivariate empirical mode decomposition
Multivariate empirical mode decomposition
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Multivariate empirical mode decomposition
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Multivariate empirical mode decomposition
Multivariate empirical mode decomposition

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Multivariate empirical mode decomposition
Multivariate empirical mode decomposition
Journal Article

Multivariate empirical mode decomposition

2010
Request Book From Autostore and Choose the Collection Method
Overview
Despite empirical mode decomposition (EMD) becoming a de facto standard for time-frequency analysis of nonlinear and non-stationary signals, its multivariate extensions are only emerging; yet, they are a prerequisite for direct multichannel data analysis. An important step in this direction is the computation of the local mean, as the concept of local extrema is not well defined for multivariate signals. To this end, we propose to use real-valued projections along multiple directions on hyperspheres (n-spheres) in order to calculate the envelopes and the local mean of multivariate signals, leading to multivariate extension of EMD. To generate a suitable set of direction vectors, unit hyperspheres (n-spheres) are sampled based on both uniform angular sampling methods and quasi-Monte Carlo-based low-discrepancy sequences. The potential of the proposed algorithm to find common oscillatory modes within multivariate data is demonstrated by simulations performed on both hexavariate synthetic and real-world human motion signals.