MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 1
Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 1
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 1
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 1
Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 1

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 1
Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 1
Journal Article

Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 1

2025
Request Book From Autostore and Choose the Collection Method
Overview
To fully utilize the potential of human induced pluripotent stem cells (hiPSCs) for allogeneic stem cell–based therapies, efficient and scalable expansion procedures must be developed. For other adherent human cell types, the combination of microcarriers (MCs) and stirred tank bioreactors has been shown to meet these demands. In this study, a hiPSC quasi-perfusion expansion procedure based on MCs was developed at 100-mL scale in spinner flasks. Process development began by assessing various medium exchange strategies and MC coatings, indicating that the hiPSCs tolerated the gradual exchange of medium well when cultivated on Synthemax II–coated MCs. This procedure was therefore scaled-up to the 1.3-L Eppendorf BioBLU 1c stirred tank bioreactor by applying the lower limit of Zwietering’s suspension criterion ( N s 1 u ), thereby demonstrating proof-of-concept when used in combination with hiPSCs for the first time. To better understand the bioreactor and its bioengineering characteristics, computational fluid dynamics and bioengineering investigations were performed prior to hiPSC cultivation. In this manner, improved process understanding allowed an expansion factor of ≈ 26 to be achieved, yielding more than 3 × 10 9 cells within 5 days. Further quality analyses confirmed that the hiPSCs maintained their viability, identity, and differentiation potential throughout cultivation. Key points • N s 1 u  can be used as a scale-up criterion for hiPSC cultivations in MC-operated stirred bioreactors • Uniform distribution and attachment of cells to the MCs are crucial for efficient expansion • Perfusion is advantageous and supports the cultivation of hiPSCs