MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Mitochondria-derived nuclear ATP surge protects against confinement-induced proliferation defects
Mitochondria-derived nuclear ATP surge protects against confinement-induced proliferation defects
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Mitochondria-derived nuclear ATP surge protects against confinement-induced proliferation defects
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Mitochondria-derived nuclear ATP surge protects against confinement-induced proliferation defects
Mitochondria-derived nuclear ATP surge protects against confinement-induced proliferation defects

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Mitochondria-derived nuclear ATP surge protects against confinement-induced proliferation defects
Mitochondria-derived nuclear ATP surge protects against confinement-induced proliferation defects
Journal Article

Mitochondria-derived nuclear ATP surge protects against confinement-induced proliferation defects

2025
Request Book From Autostore and Choose the Collection Method
Overview
The physical tissue microenvironment regulates cell state and behaviour. How mechanical confinement rewires the subcellular localisation of organelles and affects cellular metabolism is largely unknown. In this study, proteomics analysis revealed that cellular confinement induced a strong enrichment of mitochondrial proteins in the nuclear fraction. Quantitative live cell microscopy confirmed that mechanical cell confinement leads to a rapid re-localisation of mitochondria to the nuclear periphery in vitro, reflecting a physiologically relevant phenomenon in patient-derived tumours. This nucleus-mitochondria proximity is mediated by an endoplasmic reticulum-based net that entraps the mitochondria in an actin-dependent manner. Functionally, the nucleus-mitochondria proximity results in a nuclear ATP surge, which can be regulated by the genetic and pharmacological modulation of mitochondrial ATP production or via alterations of the actin cytoskeleton. The confinement-induced nuclear ATP surge has physiologically significant long-term effects on cell fitness, driven by changes in chromatin state, enhanced DNA damage repair, and cell cycle progression during mechanical cell deformation. Together, our data describe a confinement-induced metabolic adaptation that is required to enable prompt DNA damage repair and cell proliferation under mechanical confinement stress by facilitating chromatin state transitions. The authors uncover a mechano-metabolic adaptation where confinement induces rapid mitochondrial relocalization to the nuclear periphery, generating localized nuclear ATP surges that support chromatin remodeling, DNA repair, and cell cycle progression.