MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry
Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry
Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry
Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry
Journal Article

Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry

2018
Request Book From Autostore and Choose the Collection Method
Overview
Fruit growth and ripening are controlled by multiple phytohormones. How these hormones coordinate and interact with each other to control these processes at the molecular level is unclear. We found in the early stages of Fragaria vesca (woodland strawberry) fruit development, auxin increases both widths and lengths of fruits, while gibberellin [gibberellic acid (GA)] mainly promotes their longitudinal elongation. Auxin promoted GA biosynthesis and signaling by activating GA biosynthetic and signaling genes, suggesting auxin function is partially dependent on GA function. To prevent the repressive effect of abscisic acid (ABA) on fruit growth, auxin and GA suppressed ABA accumulation during early fruit development by activating the expression of FveCYP707A4a encoding cytochrome P450 monooxygenase that catalyzes ABA catabolism. At the onset of fruit ripening, both auxin and GA levels decreased, leading to a steep increase in the endogenous level of ABA that drives fruit ripening. ABA repressed the expression of FveCYP707A4a but promoted that of FveNCED, a rate-limiting step in ABA biosynthesis. Accordingly, altering FveCYP707A4a expression changed the endogenous ABA levels and affected FveNCED expression. Hence, ABA catabolism and biosynthesis are tightly linked by feedback and feedforward loops to limit ABA contents for fruit growth and to quickly increase ABA contents for the onset of fruit ripening. These results indicate that FveCYP707A4a not only regulates ABA accumulation but also provides a hub to coordinate fruit size and ripening times by relaying auxin, GA, and ABA signals.