MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Dramatic increase in reactive volatile organic compound (VOC) emissions from ships at berth after implementing the fuel switch policy in the Pearl River Delta Emission Control Area
Dramatic increase in reactive volatile organic compound (VOC) emissions from ships at berth after implementing the fuel switch policy in the Pearl River Delta Emission Control Area
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Dramatic increase in reactive volatile organic compound (VOC) emissions from ships at berth after implementing the fuel switch policy in the Pearl River Delta Emission Control Area
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Dramatic increase in reactive volatile organic compound (VOC) emissions from ships at berth after implementing the fuel switch policy in the Pearl River Delta Emission Control Area
Dramatic increase in reactive volatile organic compound (VOC) emissions from ships at berth after implementing the fuel switch policy in the Pearl River Delta Emission Control Area

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Dramatic increase in reactive volatile organic compound (VOC) emissions from ships at berth after implementing the fuel switch policy in the Pearl River Delta Emission Control Area
Dramatic increase in reactive volatile organic compound (VOC) emissions from ships at berth after implementing the fuel switch policy in the Pearl River Delta Emission Control Area
Journal Article

Dramatic increase in reactive volatile organic compound (VOC) emissions from ships at berth after implementing the fuel switch policy in the Pearl River Delta Emission Control Area

2020
Request Book From Autostore and Choose the Collection Method
Overview
Limiting fuel sulfur content (FSC) is a widely adopted approach for reducing ship emissions of sulfur dioxide (SO2) and particulate matter (PM), particularly in emission control areas (ECAs), but its impact on the emissions of volatile organic compounds (VOCs) is still not well understood. In this study, emissions from ships at berth in Guangzhou, southern China, were characterized before and after the implementation of the fuel switch policy (IFSP) with an FSC limit of 0.5 % in the Pearl River Delta ECA (ECA-PRD). After IFSP, the emission factors (EFs) of SO2 and PM2.5 for the coastal vessels decreased by 78 % and 56 % on average, respectively; however, the EFs of the VOCs were 1807±1746 mg kg−1, approximately 15 times that of 118±56.1 mg kg−1 before IFSP. This dramatic increase in the emissions of the VOCs might have been largely due to the replacement of high-sulfur residual fuel oil with low-sulfur diesel or heavy oils, which are typically richer in short-chain hydrocarbons. Moreover, reactive alkenes surpassed alkanes to become the dominant group among the VOCs, and low-carbon-number VOCs, such as ethylene, propene and isobutane, became the dominant species after IFSP. As a result of the largely elevated EFs of the reactive alkenes and aromatics after IFSP, the emitted VOCs per kilogram of fuel burned had nearly 29 times greater ozone formation potential (OFP) and approximately 2 times greater secondary organic aerosol formation potential (SOAFP) than those before IFSP. Unlike the coastal vessels, the river vessels in the region used diesel fuels consistently and were not affected by the fuel switch policy, but the EFs of their VOCs were 90 % greater than those of the coastal vessels after IFSP, with approximately 120 % greater fuel-based OFP and 70 %–140 % greater SOAFP. The results from this study suggest that while the fuel switch policy could effectively reduce SO2 and PM emissions, and thus help control PM2.5 pollution, it will also lead to greater emissions of reactive VOCs, which may threaten ozone pollution control in harbor cities. This change for coastal or ocean-going vessels, in addition to the large amounts of reactive VOCs from the river vessels, raises regulatory concerns for ship emissions of reactive VOCs.