Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Airborne Mid-Infrared Cavity enhanced Absorption spectrometer (AMICA)
by
Kloss, Corinna
, von Hobe, Marc
, Gardner, Aaron
, Madsen, Garrett L.
, Tan, Vicheith
, Leen, J. Brian
, Schillings, Johannes
, Schrade, Stefanie
, Qiu, Chenxi
, Du, Xu
, Kulessa, Thomas
, Schneider, Herbert
in
Absorption
/ Absorption spectroscopy
/ Airborne sensing
/ Aircraft
/ Aircraft compartments
/ Aircraft design
/ Altitude
/ Ammonia
/ Analytical methods
/ Atmospheric absorption
/ Atmospheric mixing
/ Carbon dioxide
/ Carbon dioxide atmospheric concentrations
/ Carbon dioxide measurements
/ Deployment
/ Design and construction
/ Dilution
/ Electrical noise
/ Flight
/ Flow system
/ Gases
/ High altitude
/ High-altitude environments
/ Infrared equipment
/ Infrared spectra
/ Infrared spectrometers
/ Infrared spectroscopy
/ Inlets (waterways)
/ Laboratories
/ Lasers
/ Measurement techniques
/ Meteorological solenoids
/ Mixing ratio
/ Nitrous oxide
/ Orifices
/ Power consumption
/ Pressurized cabins
/ Research aircraft
/ Resolution
/ Saturation
/ Sciences of the Universe
/ Solenoid valves
/ Spectral analysis
/ Spectral sensitivity
/ Spectrometer
/ Spectroscopy
/ Spectrum analysis
/ Trace gases
/ Uncertainty
/ Wavelength
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Airborne Mid-Infrared Cavity enhanced Absorption spectrometer (AMICA)
by
Kloss, Corinna
, von Hobe, Marc
, Gardner, Aaron
, Madsen, Garrett L.
, Tan, Vicheith
, Leen, J. Brian
, Schillings, Johannes
, Schrade, Stefanie
, Qiu, Chenxi
, Du, Xu
, Kulessa, Thomas
, Schneider, Herbert
in
Absorption
/ Absorption spectroscopy
/ Airborne sensing
/ Aircraft
/ Aircraft compartments
/ Aircraft design
/ Altitude
/ Ammonia
/ Analytical methods
/ Atmospheric absorption
/ Atmospheric mixing
/ Carbon dioxide
/ Carbon dioxide atmospheric concentrations
/ Carbon dioxide measurements
/ Deployment
/ Design and construction
/ Dilution
/ Electrical noise
/ Flight
/ Flow system
/ Gases
/ High altitude
/ High-altitude environments
/ Infrared equipment
/ Infrared spectra
/ Infrared spectrometers
/ Infrared spectroscopy
/ Inlets (waterways)
/ Laboratories
/ Lasers
/ Measurement techniques
/ Meteorological solenoids
/ Mixing ratio
/ Nitrous oxide
/ Orifices
/ Power consumption
/ Pressurized cabins
/ Research aircraft
/ Resolution
/ Saturation
/ Sciences of the Universe
/ Solenoid valves
/ Spectral analysis
/ Spectral sensitivity
/ Spectrometer
/ Spectroscopy
/ Spectrum analysis
/ Trace gases
/ Uncertainty
/ Wavelength
2021
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Airborne Mid-Infrared Cavity enhanced Absorption spectrometer (AMICA)
by
Kloss, Corinna
, von Hobe, Marc
, Gardner, Aaron
, Madsen, Garrett L.
, Tan, Vicheith
, Leen, J. Brian
, Schillings, Johannes
, Schrade, Stefanie
, Qiu, Chenxi
, Du, Xu
, Kulessa, Thomas
, Schneider, Herbert
in
Absorption
/ Absorption spectroscopy
/ Airborne sensing
/ Aircraft
/ Aircraft compartments
/ Aircraft design
/ Altitude
/ Ammonia
/ Analytical methods
/ Atmospheric absorption
/ Atmospheric mixing
/ Carbon dioxide
/ Carbon dioxide atmospheric concentrations
/ Carbon dioxide measurements
/ Deployment
/ Design and construction
/ Dilution
/ Electrical noise
/ Flight
/ Flow system
/ Gases
/ High altitude
/ High-altitude environments
/ Infrared equipment
/ Infrared spectra
/ Infrared spectrometers
/ Infrared spectroscopy
/ Inlets (waterways)
/ Laboratories
/ Lasers
/ Measurement techniques
/ Meteorological solenoids
/ Mixing ratio
/ Nitrous oxide
/ Orifices
/ Power consumption
/ Pressurized cabins
/ Research aircraft
/ Resolution
/ Saturation
/ Sciences of the Universe
/ Solenoid valves
/ Spectral analysis
/ Spectral sensitivity
/ Spectrometer
/ Spectroscopy
/ Spectrum analysis
/ Trace gases
/ Uncertainty
/ Wavelength
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Airborne Mid-Infrared Cavity enhanced Absorption spectrometer (AMICA)
Journal Article
Airborne Mid-Infrared Cavity enhanced Absorption spectrometer (AMICA)
2021
Request Book From Autostore
and Choose the Collection Method
Overview
We describe the Airborne Mid-Infrared Cavity enhanced Absorption spectrometer (AMICA) designed to measure trace gases in situ on research aircraft using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS). AMICA contains two largely independent and exchangeable OA-ICOS arrangements, allowing for the simultaneous measurement of multiple substances in different infrared wavelength windows tailored to scientific questions related to a particular flight mission. Three OA-ICOS setups have been implemented with the aim to measure OCS, CO2, CO, and H2O at 2050 cm−1; O3, NH3, and CO2 at 1034 cm−1; and HCN, C2H2, and N2O at 3331 cm−1. The 2050 cm−1 setup has been characterized in the laboratory and successfully used for atmospheric measurements during two campaigns with the research aircraft M55 Geophysica and one with the German HALO (High Altitude and Long Range Research Aircraft). For OCS and CO, data for scientific use have been produced with 5 % accuracy (15 % for CO below 60 ppb, due to additional uncertainties introduced by dilution of the standard) at typical atmospheric mixing ratios and laboratory-measured 1σ precision of 30 ppt for OCS and 3 ppb for CO at 0.5 Hz time resolution. For CO2, high absorption at atmospheric mixing ratios leads to saturation effects that limit sensitivity and complicate the spectral analysis, resulting in too large uncertainties for scientific use. For H2O, absorption is too weak to be measured at mixing ratios below 100 ppm. By further reducing electrical noise and improving the treatment of the baseline in the spectral retrieval, we hope to improve precision for OCS and CO, resolve the issues inhibiting useful CO2 measurements, and lower the detection limit for H2O. The 1035 and 3331 cm−1 arrangements have only partially been characterized and are still in development. Although both setups have been flown and recorded infrared spectra during field campaigns, no data for scientific use have yet been produced due to unresolved deviations of the retrieved mixing ratios to known standards (O3) or insufficient sensitivity (NH3, HCN, C2H2, N2O). The ∼100 kg instrument with a typical in-flight power consumption of about 500 VA is dimensioned to fit into one 19 in. rack typically used for deployment inside the aircraft cabin. Its rugged design and a pressurized and temperature-stabilized compartment containing the sensitive optical and electronic hardware also allow for deployment in payload bays outside the pressurized cabin even at high altitudes of 20 km. A sample flow system with two parallel proportional solenoid valves of different size orifices allows for precise regulation of cavity pressure over the wide range of inlet port pressures encountered between the ground and maximum flight altitudes. Sample flow of the order of 1 SLM (standard litre per minute) maintained by an exhaust-side pump limits the useful time resolution to about 2.5 s (corresponding to the average cavity flush time), equivalent to 500 m distance at a typical aircraft speed of 200 m s−1.
This website uses cookies to ensure you get the best experience on our website.