MbrlCatalogueTitleDetail

Do you wish to reserve the book?
ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells
ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells
ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells
ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells
Journal Article

ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells

2019
Request Book From Autostore and Choose the Collection Method
Overview
Background ARID1A (AT-rich interactive domain-containing protein 1A) is a subunit of the BAF chromatin remodeling complex and plays roles in transcriptional regulation and DNA damage response. Mutations in ARID1A that lead to inactivation or loss of expression are frequent and widespread across many cancer types including colorectal cancer (CRC). A tumor suppressor role of ARID1A has been established in a number of tumor types including CRC where the genetic inactivation of Arid1a alone led to the formation of invasive colorectal adenocarcinomas in mice. Mechanistically, ARID1A has been described to largely function through the regulation of enhancer activity. Methods To mimic ARID1A-deficient colorectal cancer, we used CRISPR/Cas9-mediated gene editing to inactivate the ARID1A gene in established colorectal cancer cell lines. We integrated gene expression analyses with genome-wide ARID1A occupancy and epigenomic mapping data to decipher ARID1A-dependent transcriptional regulatory mechanisms. Results Interestingly, we found that CRC cell lines harboring KRAS mutations are critically dependent on ARID1A function. In the absence of ARID1A, proliferation of these cell lines is severely impaired, suggesting an essential role for ARID1A in this context. Mechanistically, we showed that ARID1A acts as a co-factor at enhancers occupied by AP1 transcription factors acting downstream of the MEK/ERK pathway. Consistently, loss of ARID1A led to a disruption of KRAS/AP1-dependent enhancer activity, accompanied by a downregulation of expression of the associated target genes. Conclusions We identify a previously unknown context-dependent tumor-supporting function of ARID1A in CRC downstream of KRAS signaling. Upon the loss of ARID1A in KRAS -mutated cells, enhancers that are co-occupied by ARID1A and the AP1 transcription factors become inactive, thereby leading to decreased target gene expression. Thus, targeting of the BAF complex in KRAS -mutated CRC may offer a unique, previously unknown, context-dependent therapeutic option in CRC.