MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Novel Approach to Solve the “Missing Marker Problem” in Marker-Based Motion Analysis That Exploits the Segment Coordination Patterns in Multi-Limb Motion Data
A Novel Approach to Solve the “Missing Marker Problem” in Marker-Based Motion Analysis That Exploits the Segment Coordination Patterns in Multi-Limb Motion Data
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Novel Approach to Solve the “Missing Marker Problem” in Marker-Based Motion Analysis That Exploits the Segment Coordination Patterns in Multi-Limb Motion Data
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Novel Approach to Solve the “Missing Marker Problem” in Marker-Based Motion Analysis That Exploits the Segment Coordination Patterns in Multi-Limb Motion Data
A Novel Approach to Solve the “Missing Marker Problem” in Marker-Based Motion Analysis That Exploits the Segment Coordination Patterns in Multi-Limb Motion Data

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Novel Approach to Solve the “Missing Marker Problem” in Marker-Based Motion Analysis That Exploits the Segment Coordination Patterns in Multi-Limb Motion Data
A Novel Approach to Solve the “Missing Marker Problem” in Marker-Based Motion Analysis That Exploits the Segment Coordination Patterns in Multi-Limb Motion Data
Journal Article

A Novel Approach to Solve the “Missing Marker Problem” in Marker-Based Motion Analysis That Exploits the Segment Coordination Patterns in Multi-Limb Motion Data

2013
Request Book From Autostore and Choose the Collection Method
Overview
Marker-based human motion analysis is an important tool in clinical research and in many practical applications. Missing marker information caused by occlusions or a marker falling off is a common problem impairing data quality. The current paper proposes a conceptually new gap filling algorithm and presents results from a proof-of-principle analysis. The underlying idea of the proposed algorithm was that a multitude of internal and external constraints govern human motion and lead to a highly subject-specific movement pattern in which all motion variables are intercorrelated in a specific way. Two principal component analyses were used to determine how the coordinates of a marker with gaps correlated with the coordinates of the other, gap-free markers. Missing marker data could then be reconstructed through a series of coordinate transformations. The proposed algorithm was tested by reconstructing artificially created gaps in a 20-step walking trial and in an 18-s one-leg balance trial. The measurement accuracy's dependence on the marker position, the length of the gap, and other parameters were evaluated. Even if only 2 steps of walking or 1.8 s of postural sway (10% of the whole marker data) were provided as input in the current study, the reconstructed marker trajectory differed on average no more than 11 mm from the originally measured trajectory. The reconstructed result improved further, on average, to distances below 5 mm if the marker trajectory was available more than 50% of the trial. The results of this proof-of-principle analysis supported the assumption that missing marker information can be reconstructed from the intercorrelations between marker coordinates, provided that sufficient data with complete marker information is available. Estimating missing information cannot be avoided entirely in many situations in human motion analysis. For some of these situations, the proposed reconstruction method may provide a better solution than what is currently available.