MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Targeted Perturb-seq enables genome-scale genetic screens in single cells
Targeted Perturb-seq enables genome-scale genetic screens in single cells
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Targeted Perturb-seq enables genome-scale genetic screens in single cells
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Targeted Perturb-seq enables genome-scale genetic screens in single cells
Targeted Perturb-seq enables genome-scale genetic screens in single cells

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Targeted Perturb-seq enables genome-scale genetic screens in single cells
Targeted Perturb-seq enables genome-scale genetic screens in single cells
Journal Article

Targeted Perturb-seq enables genome-scale genetic screens in single cells

2020
Request Book From Autostore and Choose the Collection Method
Overview
The transcriptome contains rich information on molecular, cellular and organismal phenotypes. However, experimental and statistical limitations constrain sensitivity and throughput of genetic screening with single-cell transcriptomics readout. To overcome these limitations, we introduce targeted Perturb-seq (TAP-seq), a sensitive, inexpensive and platform-independent method focusing single-cell RNA-seq coverage on genes of interest, thereby increasing the sensitivity and scale of genetic screens by orders of magnitude. TAP-seq permits routine analysis of thousands of CRISPR-mediated perturbations within a single experiment, detects weak effects and lowly expressed genes, and decreases sequencing requirements by up to 50-fold. We apply TAP-seq to generate perturbation-based enhancer–target gene maps for 1,778 enhancers within 2.5% of the human genome. We thereby show that enhancer–target association is jointly determined by three-dimensional contact frequency and epigenetic states, allowing accurate prediction of enhancer targets throughout the genome. In addition, we demonstrate that TAP-seq can identify cell subtypes with only 100 sequencing reads per cell. Targeted sequencing of perturbation effects offers a sensitive approach to capture genes of interest in CRISPR-mediated screens, enabling genome-scale screens at higher scale and lower cost than whole-transcriptome Perturb-seq.