MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Long‐acting glucagon‐like peptide‐1 receptor agonists have direct access to and effects on pro‐opiomelanocortin/cocaine‐ and amphetamine‐stimulated transcript neurons in the mouse hypothalamus
Long‐acting glucagon‐like peptide‐1 receptor agonists have direct access to and effects on pro‐opiomelanocortin/cocaine‐ and amphetamine‐stimulated transcript neurons in the mouse hypothalamus
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Long‐acting glucagon‐like peptide‐1 receptor agonists have direct access to and effects on pro‐opiomelanocortin/cocaine‐ and amphetamine‐stimulated transcript neurons in the mouse hypothalamus
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Long‐acting glucagon‐like peptide‐1 receptor agonists have direct access to and effects on pro‐opiomelanocortin/cocaine‐ and amphetamine‐stimulated transcript neurons in the mouse hypothalamus
Long‐acting glucagon‐like peptide‐1 receptor agonists have direct access to and effects on pro‐opiomelanocortin/cocaine‐ and amphetamine‐stimulated transcript neurons in the mouse hypothalamus

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Long‐acting glucagon‐like peptide‐1 receptor agonists have direct access to and effects on pro‐opiomelanocortin/cocaine‐ and amphetamine‐stimulated transcript neurons in the mouse hypothalamus
Long‐acting glucagon‐like peptide‐1 receptor agonists have direct access to and effects on pro‐opiomelanocortin/cocaine‐ and amphetamine‐stimulated transcript neurons in the mouse hypothalamus
Journal Article

Long‐acting glucagon‐like peptide‐1 receptor agonists have direct access to and effects on pro‐opiomelanocortin/cocaine‐ and amphetamine‐stimulated transcript neurons in the mouse hypothalamus

2016
Request Book From Autostore and Choose the Collection Method
Overview
Liraglutide is a glucagon‐like peptide‐1 receptor (GLP‐1R) agonist marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide reduces bodyweight, and has recently also been approved for the obesity indication. Acutely, GLP‐1 markedly reduces gastric emptying, and this effect was previously believed to at least partly explain the effect on bodyweight loss. However, recent studies in both humans and animals have shown that GLP‐1R agonists, such as liraglutide, that lead to pharmacological concentrations for 24 h/day only have a minor effect on gastric emptying; such an effect is unlikely to have lasting effects on appetite reduction. Liraglutide has been shown to have direct effects in the arcuate nucleus of the rodent brain, activating pro‐opiomelanocortin neurons and increasing levels of the cocaine‐ and amphetamine‐stimulated transcript neuropeptide messenger ribonucleic acid, which correlate nicely to clinical studies where liraglutide was shown to increase feelings of satiety. However, despite the lack of a GLP‐1R on agouti‐related peptide/neuropeptide Y neurons, liraglutide also was able to prevent a hunger associated increase in agouti‐related peptide and neuropeptide Y neuropeptide messenger ribonucleic acid, again with a strong correlation to clinical studies that document reduced hunger feelings in patients while taking liraglutide. Studies using fluorescent labeled liraglutide, as well as other GLP‐1R agonists, and analysis using single‐plane illumination microscopy show that such medium‐sized peptide‐based compounds can directly access not only circumventricular organs of the brain, but also directly access discrete regions in the hypothalamus. The direct effects of long‐acting GLP‐1R agonists in the hypothalamus are likely to be an important new pathway in understanding GLP‐1R agonist mediated weight loss. GLP‐1R agonists are marketed for the treatment of type 2 diabetes, and liraglutide is also approved as a weight management agent. Studies using fluorescent labelled liraglutide as well as other GLP‐1R agonists and analysis using single plane illumination microscopy (SPIM) show that such medium size peptide based compounds can directly access not only circumventricular organs of the brain but also directly access discrete regions in the hypothalamus. The direct effects of long‐acting GLP‐1R agonists in the hypothalamus are likely to be an important new pathway in understanding GLP‐1R agonist mediated weight loss.

MBRLCatalogueRelatedBooks