MbrlCatalogueTitleDetail

Do you wish to reserve the book?
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
Journal Article

GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model

2024
Request Book From Autostore and Choose the Collection Method
Overview
Reservoirs play a significant role in modifying the spatiotemporal availability of surface water to meet multi-sector human demands, despite representing a relatively small fraction of the global water budget. Yet the integrated modeling frameworks that explore the interactions among climate, land, energy, water, and socioeconomic systems at a global scale often contain limited representations of water storage dynamics that incorporate feedbacks from other systems. In this study, we implement a representation of water storage in the Global Change Analysis Model (GCAM) to enable the exploration of the future role (e.g., expansion) of reservoir water storage globally in meeting demands for, and evolving in response to interactions with, the climate, land, and energy systems. GCAM represents 235 global water basins, operates at 5-year time steps, and uses supply curves to capture economic competition among renewable water (now including reservoirs), non-renewable groundwater, and desalination. Our approach consists of developing the GLObal Reservoir Yield (GLORY) model, which uses a linear programming (LP)-based optimization algorithm and dynamically linking GLORY with GCAM. The new coupled GCAM–GLORY approach improves the representation of reservoir water storage in GCAM in several ways. First, the GLORY model identifies the cost of supplying increasing levels of water supply from reservoir storage by considering regional physical and economic factors, such as evolving monthly reservoir inflows and demands, and the leveled cost of constructing additional reservoir storage capacity. Second, by passing those costs to GCAM, GLORY enables the exploration of future regional reservoir expansion pathways and their response to climate and socioeconomic drivers. To guide the model toward reasonable reservoir expansion pathways, GLORY applies a diverse array of feasibility constraints related to protected land, population, water sources, and cropland. Finally, the GLORY–GCAM feedback loop allows evolving water demands from GCAM to inform GLORY, resulting in an updated supply curve at each time step, thus enabling GCAM to establish a more meaningful economic value of water. This study improves our understanding of the sensitivity of reservoir water supply to multiple physical and economic dimensions, such as sub-annual variations in climate conditions and human water demands, especially for basins experiencing socioeconomic droughts.