MbrlCatalogueTitleDetail

Do you wish to reserve the book?
pH-Dependent Extraction of Antioxidant Peptides from Red Seaweed Palmaria palmata: A Sequential Approach
pH-Dependent Extraction of Antioxidant Peptides from Red Seaweed Palmaria palmata: A Sequential Approach
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
pH-Dependent Extraction of Antioxidant Peptides from Red Seaweed Palmaria palmata: A Sequential Approach
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
pH-Dependent Extraction of Antioxidant Peptides from Red Seaweed Palmaria palmata: A Sequential Approach
pH-Dependent Extraction of Antioxidant Peptides from Red Seaweed Palmaria palmata: A Sequential Approach

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
pH-Dependent Extraction of Antioxidant Peptides from Red Seaweed Palmaria palmata: A Sequential Approach
pH-Dependent Extraction of Antioxidant Peptides from Red Seaweed Palmaria palmata: A Sequential Approach
Journal Article

pH-Dependent Extraction of Antioxidant Peptides from Red Seaweed Palmaria palmata: A Sequential Approach

2024
Request Book From Autostore and Choose the Collection Method
Overview
This study employed a diverse approach to extract antioxidant peptides from red seaweed Palmaria palmata, recognized for its comparatively high protein content. Initially, an aqueous extraction of the entire seaweed was performed, followed by enzymatic hydrolysis of the solid residues prepared from the first step. The effects of three different pH levels (3, 6, and 9) during the aqueous extraction were also examined. Results indicated that the solid fraction from the sequential extraction process contained significantly higher levels of proteins and amino acids than other fractions (p < 0.05). Furthermore, the solid fractions (IC50 ranging from 2.29 to 8.15 mg.mL−1) demonstrated significantly greater free radical scavengers than the liquid fractions (IC50 ranging from 9.03 to 10.41 mg.mL−1 or not obtained at the highest concentration tested) at both stages of extraction (p < 0.05). Among the solid fractions, those produced fractions under alkaline conditions were less effective in radical scavenging than the produced fractions under acidic or neutral conditions. The fractions with most effective metal ion chelating activity were the solid fractions from the enzymatic stage, particularly at pH 3 (IC50 = 0.63 ± 0.04 mg.mL−1) and pH 6 (IC50 = 0.89 ± 0.07 mg.mL−1), which were significantly more effective than those from the initial extraction stage (p < 0.05). Despite no significant difference in the total phenolic content between these solid fractions and their corresponding liquid fractions (3.79 ± 0.05 vs. 3.48 ± 0.02 mg.mL−1 at pH 3 and 2.43 ± 0.22 vs. 2.51 ± 0.00 mg.mL−1 at pH 6) (p > 0.05), the observed antioxidant properties may be attributed to bioactive amino acids such as histidine, glutamic acid, aspartic acid, tyrosine, and methionine, either as free amino acids or within proteins and peptides.