MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Silent mutations in coding regions of Hepatitis C virus affect patterns of HCV RNA structures and attenuate viral replication and pathogenesis
Silent mutations in coding regions of Hepatitis C virus affect patterns of HCV RNA structures and attenuate viral replication and pathogenesis
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Silent mutations in coding regions of Hepatitis C virus affect patterns of HCV RNA structures and attenuate viral replication and pathogenesis
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Silent mutations in coding regions of Hepatitis C virus affect patterns of HCV RNA structures and attenuate viral replication and pathogenesis
Silent mutations in coding regions of Hepatitis C virus affect patterns of HCV RNA structures and attenuate viral replication and pathogenesis

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Silent mutations in coding regions of Hepatitis C virus affect patterns of HCV RNA structures and attenuate viral replication and pathogenesis
Silent mutations in coding regions of Hepatitis C virus affect patterns of HCV RNA structures and attenuate viral replication and pathogenesis
Journal Article

Silent mutations in coding regions of Hepatitis C virus affect patterns of HCV RNA structures and attenuate viral replication and pathogenesis

2025
Request Book From Autostore and Choose the Collection Method
Overview
Background Vaccines based on live attenuated viruses are the most effective strategy for controlling infections, since they elicit long-lasting natural and effective immune response, but entail challenges for safety and virulence. Hepatitis C Virus (HCV) causes liver diseases and liver cancer, with millions infected each year and hundreds of thousands of annual fatalities; but no vaccine is currently available for the virus. Here, we present a novel computational approach for the accurate prediction of virus attenuation. Results We rationally design viral variants by inserting a large number of synonymous mutations in the NS5A/B coding region to disrupt the viral RNA’s secondary structure and regulatory sequences important for the viral life cycle. By measuring RNA levels and virus spread in an HCV infection model, we show that some variants have lower viral fitness relative to the wild-type virus, with gradient of attenuation in concordance with the prediction model. Deep sequencing of replicating viruses demonstrates relative genomic stability of the attenuated variant. Differential expression analysis and evaluation of cancer-related phenotypes reveal that some variants have a lower pathogenic influence on the host cells, compared to the wildtype virus. Conclusions These rationally designed variants reveal novel information on key functional elements in HCV RNA important for virus fitness, that may be further considered as a promising direction for a viable HCV vaccine. Importantly, the computational approach described here is based on the most fundamental viral regulatory motifs and therefore may be applied for almost all viruses as a new strategy for vaccine development.