MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Dynamical regimes of diffusion models
Dynamical regimes of diffusion models
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Dynamical regimes of diffusion models
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Dynamical regimes of diffusion models
Dynamical regimes of diffusion models

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Dynamical regimes of diffusion models
Dynamical regimes of diffusion models
Journal Article

Dynamical regimes of diffusion models

2024
Request Book From Autostore and Choose the Collection Method
Overview
We study generative diffusion models in the regime where both the data dimension and the sample size are large, and the score function is trained optimally. Using statistical physics methods, we identify three distinct dynamical regimes during the generative diffusion process. The generative dynamics, starting from pure noise, first encounters a speciation transition, where the broad structure of the data emerges, akin to symmetry breaking in phase transitions. This is followed by a collapse phase, where the dynamics is attracted to a specific training point through a mechanism similar to condensation in a glass phase. The speciation time can be obtained from a spectral analysis of the data’s correlation matrix, while the collapse time relates to an excess entropy measure, and reveals the existence of a curse of dimensionality for diffusion models. These theoretical findings are supported by analytical solutions for Gaussian mixtures and confirmed by numerical experiments on real datasets. Diffusion methods are widely used for generating data in AI applications. Here, authors show that optimally trained diffusion models exhibit three dynamical regimes: starting from pure noise, they reach a regime where the main data class is sealed, and finally collapse onto one training point.