MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Dynamic brain states during reasoning tasks: a co-activation pattern analysis
Dynamic brain states during reasoning tasks: a co-activation pattern analysis
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Dynamic brain states during reasoning tasks: a co-activation pattern analysis
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Dynamic brain states during reasoning tasks: a co-activation pattern analysis
Dynamic brain states during reasoning tasks: a co-activation pattern analysis

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Dynamic brain states during reasoning tasks: a co-activation pattern analysis
Dynamic brain states during reasoning tasks: a co-activation pattern analysis
Journal Article

Dynamic brain states during reasoning tasks: a co-activation pattern analysis

2025
Request Book From Autostore and Choose the Collection Method
Overview
•CAP analysis reveals dynamic brain states during reasoning tasks.•CAP2 (visual network) and CAP3 (DMN-sensorimotor) dominate during reasoning.•Longer engagement in specific CAPs correlates with better reasoning performance.•Aging reduces task-relevant CAP engagement, increasing transitions to baseline states.•CAP analysis provides novel insights into transient brain network reconfigurations. Brain activity exhibits substantial temporal variability during cognitive processes, yet traditional fMRI analyses often fail to capture these dynamic patterns. Co-activation pattern (CAP) analysis has emerged as a promising method to study brain dynamics. CAP analysis provides a powerful framework for capturing transient brain states, however, its application to cognitive tasks remains very limited, with no prior studies specifically investigating its role in reasoning performance. This study investigated CAPs during reasoning tasks, their relationship with cognitive performance, age and other individual differences. We applied CAP analysis to fMRI data from 303 participants performing three reasoning tasks—Matrix Reasoning, Letter Sets, and Paper Folding—along with resting-state data. Using K-means clustering, we identified four distinct CAPs, each exhibiting unique spatial and temporal characteristics. These CAPs were analyzed in relation to predefined resting-state networks, revealing their functional relevance to cognitive task engagement. Key temporal metrics, including fraction occupancy, dwelling time, and transition probabilities, were assessed across reasoning tasks and resting state. The results demonstrate that CAP2 and CAP3 are predominantly engaged during reasoning tasks, with CAP2 strongly overlapping with the visual network and CAP3 exhibiting concurrent default mode and sensorimotor network activations. CAP1, primarily dominant during rest, showed prolonged engagement in older individuals, while CAP4 appeared to function as a transitional state facilitating network reorganization. Regression analyses link longer dwelling times and higher fraction occupancy of CAP2 and CAP3 to superior reasoning performance, whereas excessive transitions to CAP4 negatively impacted cognitive task outcomes. Additionally, aging was associated with reduced engagement in task-relevant CAPs and an increased tendency to transition into baseline-like states. These findings underscore the critical role of dynamic brain state reconfigurations in supporting cognition specifically reasoning and highlight CAP analysis as a powerful tool for studying transient brain function and individual cognitive differences.