MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Conditional control of gene expression in the mouse
Conditional control of gene expression in the mouse
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Conditional control of gene expression in the mouse
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Conditional control of gene expression in the mouse
Conditional control of gene expression in the mouse

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Conditional control of gene expression in the mouse
Conditional control of gene expression in the mouse
Journal Article

Conditional control of gene expression in the mouse

2001
Request Book From Autostore and Choose the Collection Method
Overview
Key Points Temporal and spatial control of gene expression in the mouse can be achieved using binary transgenic systems, in which gene expression is controlled by the interaction of an effector protein product on a target transgene. These interactions are controlled by crossing mouse lines, or by adding or removing an exogenous inducer. Binary transgenic systems fall into two categories. One is based on transcriptional transactivation and is well suited for activating transgenes in gain-of-function experiments. The other is based on site-specific DNA recombination and can be used to activate transgenes or to generate tissue-specific gene knockouts and cell-lineage markers. The most commonly used transcriptional systems are based on the tetracycline resistance operon of Escherichia coli . The effectors of these systems fall into two categories defined by whether transcription activation occurs upon the administration or depletion of a tetracycline compound (usually doxycycline). The Gal4-based system is a transactivation system that does not require an inducer, but Gal4 transcriptional activation can be controlled by synthetic steroids when a mutated ligand-binding domain is incorporated into a Gal4 chimeric transactivator. The most widely used site-specific DNA recombination system uses the Cre recombinase from bacteriophage P1. The Flp recombinase from Saccharomyces cerevisiae has also been adapted for use in mice. By using gene-targeting techniques to produce mice with modified endogenous genes that can be acted on by Cre or Flp recombinases expressed under the control of tissue-specific promoters, site-specific recombination can be used to inactivate endogenous genes in a spatially controlled manner. Cre/Flp activity can also be controlled temporally by delivering cre / FLP -encoding transgenes in viral vectors, by administering exogenous steroids to mice that carry a chimeric transgene consisting of the cre gene fused to a mutated ligand-binding domain, or by using transcriptional transactivation to control cre / FLP expression. The irreversibility of site-specific recombination makes this technique uniquely suited for a new type of analysis in which the transient tissue-specific expression of cre / FLP is used to permanently activate a reporter target gene for cell-lineage studies. One of the most powerful tools that the molecular biology revolution has given us is the ability to turn genes on and off at our discretion. In the mouse, this has been accomplished by using binary systems in which gene expression is dependent on the interaction of two components, resulting in either transcriptional transactivation or DNA recombination. During recent years, these systems have been used to analyse complex and multi-staged biological processes, such as embryogenesis and cancer, with unprecedented precision. Here, I review these systems and discuss certain studies that exemplify the advantages and limitations of each system.