MbrlCatalogueTitleDetail

Do you wish to reserve the book?
In vitro and in vivo drug screens of tumor cells identify novel therapies for high‐risk child cancer
In vitro and in vivo drug screens of tumor cells identify novel therapies for high‐risk child cancer
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
In vitro and in vivo drug screens of tumor cells identify novel therapies for high‐risk child cancer
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
In vitro and in vivo drug screens of tumor cells identify novel therapies for high‐risk child cancer
In vitro and in vivo drug screens of tumor cells identify novel therapies for high‐risk child cancer

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
In vitro and in vivo drug screens of tumor cells identify novel therapies for high‐risk child cancer
In vitro and in vivo drug screens of tumor cells identify novel therapies for high‐risk child cancer
Journal Article

In vitro and in vivo drug screens of tumor cells identify novel therapies for high‐risk child cancer

2022
Request Book From Autostore and Choose the Collection Method
Overview
Biomarkers which better match anticancer drugs with cancer driver genes hold the promise of improved clinical responses and cure rates. We developed a precision medicine platform of rapid high‐throughput drug screening (HTS) and patient‐derived xenografting (PDX) of primary tumor tissue, and evaluated its potential for treatment identification among 56 consecutively enrolled high‐risk pediatric cancer patients, compared with conventional molecular genomics and transcriptomics. Drug hits were seen in the majority of HTS and PDX screens, which identified therapeutic options for 10 patients for whom no targetable molecular lesions could be found. Screens also provided orthogonal proof of drug efficacy suggested by molecular analyses and negative results for some molecular findings. We identified treatment options across the whole testing platform for 70% of patients. Only molecular therapeutic recommendations were provided to treating oncologists and led to a change in therapy in 53% of patients, of whom 29% had clinical benefit. These data indicate that in vitro and in vivo drug screening of tumor cells could increase therapeutic options and improve clinical outcomes for high‐risk pediatric cancer patients. Synopsis A precision diagnostic platform integrating genomics and transcriptomics with drug testing of patient's primary tumor cells in high throughput drug screening (HTS) and patient‐derived xenograft (PDX) was established to improve identification of therapies in high‐risk pediatric cancer patients. Treatment options could be identified for 70% of patients across the four‐part platform. HTS provided orthogonal proof of drug efficacy suggested by molecular analyses and identified many new drug responses without prior molecular hallmarks. Effective treatments were observed in more than half of PDX models. There was a strong correlation between HTS and PDX results, and the clinical responses in patients. Graphical Abstract A precision diagnostic platform integrating genomics and transcriptomics with drug testing of patient's primary tumor cells in high throughput drug screening (HTS) and patient‐derived xenograft (PDX) was established to improve identification of therapies in high‐risk pediatric cancer patients.