MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Bridging experiment and theory: a template for unifying NMR data and electronic structure calculations
Bridging experiment and theory: a template for unifying NMR data and electronic structure calculations
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Bridging experiment and theory: a template for unifying NMR data and electronic structure calculations
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Bridging experiment and theory: a template for unifying NMR data and electronic structure calculations
Bridging experiment and theory: a template for unifying NMR data and electronic structure calculations

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Bridging experiment and theory: a template for unifying NMR data and electronic structure calculations
Bridging experiment and theory: a template for unifying NMR data and electronic structure calculations
Journal Article

Bridging experiment and theory: a template for unifying NMR data and electronic structure calculations

2016
Request Book From Autostore and Choose the Collection Method
Overview
Background The testing of theoretical models with experimental data is an integral part of the scientific method, and a logical place to search for new ways of stimulating scientific productivity. Often experiment/theory comparisons may be viewed as a workflow comprised of well-defined, rote operations distributed over several distinct computers, as exemplified by the way in which predictions from electronic structure theories are evaluated with results from spectroscopic experiments. For workflows such as this, which may be laborious and time consuming to perform manually, software that could orchestrate the operations and transfer results between computers in a seamless and automated fashion would offer major efficiency gains. Such tools also promise to alter how researchers interact with data outside their field of specialization by, e.g., making raw experimental results more accessible to theorists, and the outputs of theoretical calculations more readily comprehended by experimentalists. Results An implementation of an automated workflow has been developed for the integrated analysis of data from nuclear magnetic resonance (NMR) experiments and electronic structure calculations. Kepler (Altintas et al. 2004 ) open source software was used to coordinate the processing and transfer of data at each step of the workflow. This workflow incorporated several open source software components, including electronic structure code to compute NMR parameters, a program to simulate NMR signals, NMR data processing programs, and others. The Kepler software was found to be sufficiently flexible to address several minor implementation challenges without recourse to other software solutions. The automated workflow was demonstrated with data from a 17 O NMR study of uranyl salts described previously (Cho et al. in J Chem Phys 132:084501, 2010 ). Conclusions The functional implementation of an automated process linking NMR data with electronic structure predictions demonstrates that modern software tools such as Kepler can be used to construct programs that comprehensively manage complex, multi-step scientific workflows spanning several different computers. Automation of the workflow can greatly accelerate the pace of discovery, and allows researchers to focus on the fundamental scientific questions rather than mastery of specialized software and data processing techniques. Future developments that would expand the scope and power of this approach include tools to standardize data and associated metadata formats, and the creation of interactive user interfaces to allow real-time exploration of the effects of program inputs on calculated outputs.