MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes
A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes
A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes
A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes
Journal Article

A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes

2018
Request Book From Autostore and Choose the Collection Method
Overview
Medical therapy often consists of multiple stages, with a treatment chosen by the physician at each stage based on the patient's history of treatments and clinical outcomes. These decisions can be formalized as a dynamic treatment regime. This article describes a new approach for optimizing dynamic treatment regimes, which bridges the gap between Bayesian inference and existing approaches, like Q-learning. The proposed approach fits a series of Bayesian regression models, one for each stage, in reverse sequential order. Each model uses as a response variable the remaining payoff assuming optimal actions are taken at subsequent stages, and as covariates the current history and relevant actions at that stage. The key difficulty is that the optimal decision rules at subsequent stages are unknown, and even if these decision rules were known the relevant response variables may be counterfactual. However, posterior distributions can be derived from the previously fitted regression models for the optimal decision rules and the counterfactual response variables under a particular set of rules. The proposed approach averages over these posterior distributions when fitting each regression model. An efficient sampling algorithm for estimation is presented, along with simulation studies that compare the proposed approach with Q-learning. Supplementary materials for this article are available online.