MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Fully Bayesian Analysis of RNA-seq Counts for the Detection of Gene Expression Heterosis
Fully Bayesian Analysis of RNA-seq Counts for the Detection of Gene Expression Heterosis
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Fully Bayesian Analysis of RNA-seq Counts for the Detection of Gene Expression Heterosis
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Fully Bayesian Analysis of RNA-seq Counts for the Detection of Gene Expression Heterosis
Fully Bayesian Analysis of RNA-seq Counts for the Detection of Gene Expression Heterosis

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Fully Bayesian Analysis of RNA-seq Counts for the Detection of Gene Expression Heterosis
Fully Bayesian Analysis of RNA-seq Counts for the Detection of Gene Expression Heterosis
Journal Article

Fully Bayesian Analysis of RNA-seq Counts for the Detection of Gene Expression Heterosis

2019
Request Book From Autostore and Choose the Collection Method
Overview
Heterosis, or hybrid vigor, is the enhancement of the phenotype of hybrid progeny relative to their inbred parents. Heterosis is extensively used in agriculture, and the underlying mechanisms are unclear. To investigate the molecular basis of phenotypic heterosis, researchers search tens of thousands of genes for heterosis with respect to expression in the transcriptome. Difficulty arises in the assessment of heterosis due to composite null hypotheses and nonuniform distributions for p-values under these null hypotheses. Thus, we develop a general hierarchical model for count data and a fully Bayesian analysis in which an efficient parallelized Markov chain Monte Carlo algorithm ameliorates the computational burden. We use our method to detect gene expression heterosis in a two-hybrid plant-breeding scenario, both in a real RNA-seq maize dataset and in simulation studies. In the simulation studies, we show our method has well-calibrated posterior probabilities and credible intervals when the model assumed in analysis matches the model used to simulate the data. Although model misspecification can adversely affect calibration, the methodology is still able to accurately rank genes. Finally, we show that hyperparameter posteriors are extremely narrow and an empirical Bayes (eBayes) approach based on posterior means from the fully Bayesian analysis provides virtually equivalent posterior probabilities, credible intervals, and gene rankings relative to the fully Bayesian solution. This evidence of equivalence provides support for the use of eBayes procedures in RNA-seq data analysis if accurate hyperparameter estimates can be obtained. Supplementary materials for this article are available online.

MBRLCatalogueRelatedBooks