MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Modeling survival at multi-population scales using mark–recapture data
Modeling survival at multi-population scales using mark–recapture data
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Modeling survival at multi-population scales using mark–recapture data
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Modeling survival at multi-population scales using mark–recapture data
Modeling survival at multi-population scales using mark–recapture data

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Modeling survival at multi-population scales using mark–recapture data
Modeling survival at multi-population scales using mark–recapture data
Journal Article

Modeling survival at multi-population scales using mark–recapture data

2009
Request Book From Autostore and Choose the Collection Method
Overview
The demography of vertebrate populations is governed in part by processes operating at large spatial scales that have synchronizing effects on demographic parameters over large geographic areas, and in part, by local processes that generate fluctuations that are independent across populations. We describe a statistical model for the analysis of individual monitoring data at the multi-population scale that allows us to (1) split up temporal variation in survival into two components that account for these two types of processes and (2) evaluate the role of environmental factors in generating these two components. We derive from this model an index of synchrony among populations in the pattern of temporal variation in survival, and we evaluate the extent to which environmental factors contribute to synchronize or desynchronize survival variation among populations. When applied to individual monitoring data from four colonies of the Atlantic Puffin (Fratercula arctica), 67% of between-year variance in adult survival was accounted for by a global spatial-scale component, indicating substantial synchrony among colonies. Local sea surface temperature (SST) accounted for 40% of the global spatial-scale component but also for an equally large fraction of the local-scale component. SST thus acted at the same time as both a synchronizing and a desynchronizing agent. Between-year variation in adult survival not explained by the effect of local SST was as synchronized as total between-year variation, suggesting that other unknown environmental factors acted as synchronizing agents. Our approach, which focuses on demographic mechanisms at the multi-population scale, ideally should be combined with investigations of population size time series in order to characterize thoroughly the processes that underlie patterns of multi-population dynamics and, ultimately, range dynamics.