MbrlCatalogueTitleDetail

Do you wish to reserve the book?
New in silico approach to assessing RNA secondary structures with non-canonical base pairs
New in silico approach to assessing RNA secondary structures with non-canonical base pairs
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
New in silico approach to assessing RNA secondary structures with non-canonical base pairs
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
New in silico approach to assessing RNA secondary structures with non-canonical base pairs
New in silico approach to assessing RNA secondary structures with non-canonical base pairs

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
New in silico approach to assessing RNA secondary structures with non-canonical base pairs
New in silico approach to assessing RNA secondary structures with non-canonical base pairs
Journal Article

New in silico approach to assessing RNA secondary structures with non-canonical base pairs

2015
Request Book From Autostore and Choose the Collection Method
Overview
Background The function of RNA is strongly dependent on its structure, so an appropriate recognition of this structure, on every level of organization, is of great importance. One particular concern is the assessment of base-base interactions, described as the secondary structure, the knowledge of which greatly facilitates an interpretation of RNA function and allows for structure analysis on the tertiary level. The RNA secondary structure can be predicted from a sequence using in silico methods often adjusted with experimental data, or assessed from 3D structure atom coordinates. Computational approaches typically consider only canonical, Watson-Crick and wobble base pairs. Handling of non-canonical interactions, important for a full description of RNA structure, is still very difficult. Results We introduce our novel approach to assessing an extended RNA secondary structure, which characterizes both canonical and non-canonical base pairs, along with their type classification. It is based on predicting the RNA 3D structure from a user-provided sequence or a secondary structure that only describes canonical base pairs, and then deriving the extended secondary structure from atom coordinates. In our example implementation, this was achieved by integrating the functionality of two fully automated, high fidelity methods in a computational pipeline: RNAComposer for the 3D RNA structure prediction and RNApdbee for base-pair annotation. Conclusions The presented methodology ties together existing applications for RNA 3D structure prediction and base-pair annotation. The example performance, applying RNAComposer and RNApdbee, reveals better accuracy in non-canonical base pair assessment than the compared methods that directly predict RNA secondary structure.