MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Comparison of six statistical methods for interrupted time series studies: empirical evaluation of 190 published series
Comparison of six statistical methods for interrupted time series studies: empirical evaluation of 190 published series
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Comparison of six statistical methods for interrupted time series studies: empirical evaluation of 190 published series
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Comparison of six statistical methods for interrupted time series studies: empirical evaluation of 190 published series
Comparison of six statistical methods for interrupted time series studies: empirical evaluation of 190 published series

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Comparison of six statistical methods for interrupted time series studies: empirical evaluation of 190 published series
Comparison of six statistical methods for interrupted time series studies: empirical evaluation of 190 published series
Journal Article

Comparison of six statistical methods for interrupted time series studies: empirical evaluation of 190 published series

2021
Request Book From Autostore and Choose the Collection Method
Overview
Background The Interrupted Time Series (ITS) is a quasi-experimental design commonly used in public health to evaluate the impact of interventions or exposures. Multiple statistical methods are available to analyse data from ITS studies, but no empirical investigation has examined how the different methods compare when applied to real-world datasets. Methods A random sample of 200 ITS studies identified in a previous methods review were included. Time series data from each of these studies was sought. Each dataset was re-analysed using six statistical methods. Point and confidence interval estimates for level and slope changes, standard errors, p- values and estimates of autocorrelation were compared between methods. Results From the 200 ITS studies, including 230 time series, 190 datasets were obtained. We found that the choice of statistical method can importantly affect the level and slope change point estimates, their standard errors, width of confidence intervals and p- values. Statistical significance (categorised at the 5% level) often differed across the pairwise comparisons of methods, ranging from 4 to 25% disagreement. Estimates of autocorrelation differed depending on the method used and the length of the series. Conclusions The choice of statistical method in ITS studies can lead to substantially different conclusions about the impact of the interruption. Pre-specification of the statistical method is encouraged, and naive conclusions based on statistical significance should be avoided.