MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Machine learning-based protein crystal detection for monitoring of crystallization processes enabled with large-scale synthetic data sets of photorealistic images
Machine learning-based protein crystal detection for monitoring of crystallization processes enabled with large-scale synthetic data sets of photorealistic images
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Machine learning-based protein crystal detection for monitoring of crystallization processes enabled with large-scale synthetic data sets of photorealistic images
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Machine learning-based protein crystal detection for monitoring of crystallization processes enabled with large-scale synthetic data sets of photorealistic images
Machine learning-based protein crystal detection for monitoring of crystallization processes enabled with large-scale synthetic data sets of photorealistic images

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Machine learning-based protein crystal detection for monitoring of crystallization processes enabled with large-scale synthetic data sets of photorealistic images
Machine learning-based protein crystal detection for monitoring of crystallization processes enabled with large-scale synthetic data sets of photorealistic images
Journal Article

Machine learning-based protein crystal detection for monitoring of crystallization processes enabled with large-scale synthetic data sets of photorealistic images

2022
Request Book From Autostore and Choose the Collection Method
Overview
Since preparative chromatography is a sustainability challenge due to large amounts of consumables used in downstream processing of biomolecules, protein crystallization offers a promising alternative as a purification method. While the limited crystallizability of proteins often restricts a broad application of crystallization as a purification method, advances in molecular biology, as well as computational methods are pushing the applicability towards integration in biotechnological downstream processes. However, in industrial and academic settings, monitoring protein crystallization processes non-invasively by microscopic photography and automated image evaluation remains a challenging problem. Recently, the identification of single crystal objects using deep learning has been the subject of increased attention for various model systems. However, the advancement of crystal detection using deep learning for biotechnological applications is limited: robust models obtained through supervised machine learning tasks require large-scale and high-quality data sets usually obtained in large projects through extensive manual labeling, an approach that is highly error-prone for dense systems of transparent crystals. For the first time, recent trends involving the use of synthetic data sets for supervised learning are transferred, thus generating photorealistic images of virtual protein crystals in suspension (PCS) through the use of ray tracing algorithms, accompanied by specialized data augmentations modelling experimental noise. Further, it is demonstrated that state-of-the-art models trained with the large-scale synthetic PCS data set outperform similar fine-tuned models based on the average precision metric on a validation data set, followed by experimental validation using high-resolution photomicrographs from stirred tank protein crystallization processes.