MbrlCatalogueTitleDetail

Do you wish to reserve the book?
IDO1 inhibition enhances CLDN18.2-CAR-T cell therapy in gastrointestinal cancers by overcoming kynurenine-mediated metabolic suppression in the tumor microenvironment
IDO1 inhibition enhances CLDN18.2-CAR-T cell therapy in gastrointestinal cancers by overcoming kynurenine-mediated metabolic suppression in the tumor microenvironment
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
IDO1 inhibition enhances CLDN18.2-CAR-T cell therapy in gastrointestinal cancers by overcoming kynurenine-mediated metabolic suppression in the tumor microenvironment
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
IDO1 inhibition enhances CLDN18.2-CAR-T cell therapy in gastrointestinal cancers by overcoming kynurenine-mediated metabolic suppression in the tumor microenvironment
IDO1 inhibition enhances CLDN18.2-CAR-T cell therapy in gastrointestinal cancers by overcoming kynurenine-mediated metabolic suppression in the tumor microenvironment

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
IDO1 inhibition enhances CLDN18.2-CAR-T cell therapy in gastrointestinal cancers by overcoming kynurenine-mediated metabolic suppression in the tumor microenvironment
IDO1 inhibition enhances CLDN18.2-CAR-T cell therapy in gastrointestinal cancers by overcoming kynurenine-mediated metabolic suppression in the tumor microenvironment
Journal Article

IDO1 inhibition enhances CLDN18.2-CAR-T cell therapy in gastrointestinal cancers by overcoming kynurenine-mediated metabolic suppression in the tumor microenvironment

2025
Request Book From Autostore and Choose the Collection Method
Overview
Background Chimeric antigen receptor (CAR)-T cell therapy has achieved remarkable success in hematologic malignancies but faces significant limitations in gastrointestinal tumors due to the immunosuppressive tumor microenvironment (TME). Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme in the TME, suppresses T cell efficacy by catalyzing tryptophan degradation to kynurenine (Kyn), leading to T cell exhaustion and reduced cytotoxicity. This study investigates the role of IDO1 inhibition in overcoming metabolic suppression by kynurenine and enhancing Claudin18.2 (CLDN18.2) CAR-T cell therapy in gastric and pancreatic adenocarcinoma models. Methods We evaluated the impact of genetic knockdown and pharmacological inhibition of IDO1 (using epacadostat) on CAR-T cell functionality, including cytokine production and exhaustion marker expression. The effects of fludarabine and cyclophosphamide preconditioning on IDO1 expression, CAR-T cell infiltration, and antitumor activity was also examined. In vivo tumor models of gastric and pancreatic adenocarcinomas were used to assess the efficacy of combining IDO1 inhibition with CLDN18.2-CAR-T therapy. Results IDO1 inhibition significantly enhanced CAR-T cell function by increasing cytokine production, reducing exhaustion markers by decreasing TOX expression and improving tumor cell lysis. Preconditioning with fludarabine and cyclophosphamide further suppressed IDO1 expression in the TME, facilitating enhanced CAR-T cell infiltration. In vivo studies demonstrated that combining IDO1 inhibition with CAR-T therapy led to robust tumor growth suppression and prolonged survival in gastric and pancreatic tumor models. Conclusions Targeting IDO1 represents a promising strategy to overcome immunosuppressive barriers in gastrointestinal cancers, improving the efficacy of CLDN18.2-CAR-T therapy. These findings highlight the potential for integrating IDO1 inhibition into CAR-T treatment regimens to address resistance in treatment-refractory cancers.