MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Spatial and Temporal Inconsistency of Forest Resilience and Forest Vegetation Greening in Southwest China Under Climate Change
Spatial and Temporal Inconsistency of Forest Resilience and Forest Vegetation Greening in Southwest China Under Climate Change
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Spatial and Temporal Inconsistency of Forest Resilience and Forest Vegetation Greening in Southwest China Under Climate Change
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Spatial and Temporal Inconsistency of Forest Resilience and Forest Vegetation Greening in Southwest China Under Climate Change
Spatial and Temporal Inconsistency of Forest Resilience and Forest Vegetation Greening in Southwest China Under Climate Change

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Spatial and Temporal Inconsistency of Forest Resilience and Forest Vegetation Greening in Southwest China Under Climate Change
Spatial and Temporal Inconsistency of Forest Resilience and Forest Vegetation Greening in Southwest China Under Climate Change
Journal Article

Spatial and Temporal Inconsistency of Forest Resilience and Forest Vegetation Greening in Southwest China Under Climate Change

2025
Request Book From Autostore and Choose the Collection Method
Overview
Under the backdrop of global climate warming, both forest vegetation greening and resilience decline coexist, and the consistency of these trends at the regional scale remains controversial. This study uses the kNDVI (Kernel Normalized Difference Vegetation Index) and TAC (Temporal Autocorrelation) index framework, combined with BEAST and Random Forest methods, to quantify and analyze the spatiotemporal evolution of forest resilience and its driving factors in Southwest China from 2000 to 2022. The results show the following: (1) Forest resilience exhibits a “high in the northwest and low in the southeast” spatial distribution, with a temporal pattern of “increase-decrease-increase.” The years 2010 and 2015 are key turning points. Trend shift analysis divides resilience into six types. (2) Although forest vegetation shows a clear greening trend, resilience does not necessarily increase with greening, and in some areas, an “increase in greening—decline in resilience” asynchronous pattern appears. (3) The annual average temperature, precipitation, and solar radiation are the main climate factors and their influence on resilience follows a nonlinear relationship. Higher temperatures and increased radiation may suppress resilience, while increased precipitation can enhance it. This study suggests incorporating the TAC indicator into ecological monitoring and early warning systems, along with applying trend classification results for region-specific management to improve the scientific basis and adaptability of forest governance under climate change.