MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES)
Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES)
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES)
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES)
Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES)

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES)
Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES)
Journal Article

Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES)

2024
Request Book From Autostore and Choose the Collection Method
Overview
Background Genome-wide association studies have successfully identified genetic variants associated with human disease. Various statistical approaches based on penalized and machine learning methods have recently been proposed for disease prediction. In this study, we evaluated the performance of several such methods for predicting asthma using the Korean Chip (KORV1.1) from the Korean Genome and Epidemiology Study (KoGES). Results First, single-nucleotide polymorphisms were selected via single-variant tests using logistic regression with the adjustment of several epidemiological factors. Next, we evaluated the following methods for disease prediction: ridge, least absolute shrinkage and selection operator, elastic net, smoothly clipped absolute deviation, support vector machine, random forest, boosting, bagging, naïve Bayes, and k -nearest neighbor. Finally, we compared their predictive performance based on the area under the curve of the receiver operating characteristic curves, precision, recall, F1-score, Cohen′s Kappa, balanced accuracy, error rate, Matthews correlation coefficient, and area under the precision-recall curve. Additionally, three oversampling algorithms are used to deal with imbalance problems. Conclusions Our results show that penalized methods exhibit better predictive performance for asthma than that achieved via machine learning methods. On the other hand, in the oversampling study, randomforest and boosting methods overall showed better prediction performance than penalized methods.