MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan
The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan
The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan
The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan
Journal Article

The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan

2014
Request Book From Autostore and Choose the Collection Method
Overview
Mid-domain effect (MDE) models predict that the random placement of species’ ranges within a bounded geographical area leads to increased range overlap and species richness in the center of the bounded area. These models are frequently applied to study species-richness patterns of macroorganisms, but the MDE in relation to microorganisms is poorly understood. In this study, we examined the characteristics of the MDE in richness patterns of ectomycorrhizal (EM) fungi, an ecologically important group of soil symbionts. We conducted intensive soil sampling to investigate overlap among species ranges and the applicability of the MDE to EM fungi in four temperate forest stands along an elevation gradient on Mount Fuji, Japan. Molecular analyses using direct sequencing revealed 302 EM fungal species. Of 73 EM fungal species found in multiple stands, 72 inhabited a continuous range along the elevation gradient. The maximum overlap in species range and the highest species richness occurred at elevations in the middle of the gradient. The observed richness pattern also fit within the 95% confidence interval of the mid-domain null model, supporting the role of the MDE in EM fungal richness. Deviation in observed richness from the mean of the mid-domain null estimation was negatively correlated with some environmental factors, including precipitation and soil C/N, indicating that unexplained richness patterns could be driven by these environmental factors. Our results clearly support the existence of microbial species’ ranges along environmental gradients and the potential applicability of the MDE to better understand microbial diversity patterns.