MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Acute degradation of nucleolin reveals its novel functions in cell cycle progression and cell division in triple negative breast cancer
Acute degradation of nucleolin reveals its novel functions in cell cycle progression and cell division in triple negative breast cancer
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Acute degradation of nucleolin reveals its novel functions in cell cycle progression and cell division in triple negative breast cancer
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Acute degradation of nucleolin reveals its novel functions in cell cycle progression and cell division in triple negative breast cancer
Acute degradation of nucleolin reveals its novel functions in cell cycle progression and cell division in triple negative breast cancer

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Acute degradation of nucleolin reveals its novel functions in cell cycle progression and cell division in triple negative breast cancer
Acute degradation of nucleolin reveals its novel functions in cell cycle progression and cell division in triple negative breast cancer
Journal Article

Acute degradation of nucleolin reveals its novel functions in cell cycle progression and cell division in triple negative breast cancer

2025
Request Book From Autostore and Choose the Collection Method
Overview
Introduction Nucleoli are large nuclear sub-compartments where vital processes, such as ribosome assembly, take place. Most nucleolar proteins are essential; thus, their abrogation cannot be achieved through conventional approaches. This technical obstacle has limited our understanding of the biological functions of nucleolar proteins in cell homeostasis and cancer pathogenesis. Methods We applied the Auxin Inducible Degron (AID) proteolytic system, paired with CRISPR/Cas9 knock-in gene-editing, to obtain an unprecedented characterization of the biological activities of Nucleolin (NCL), one of the most abundant nucleolar proteins, in Triple Negative Breast Cancer (TNBC) cells. Then, we combined live-cell imaging, RNA-sequencing, and quantitative proteomics, to characterize the impact of NCL acute abrogation on the behavior of TNBC cells. Finally, we used in silico analyses to validate NCL molecular role in TNBC patients. Results Acute abrogation of endogenous NCL impacted both the transcriptome and the proteome of TNBC cells, particularly affecting critical players involved in ribosome biogenesis and in cell cycle progression. Unexpectedly, NCL depletion limited cancer cell ability to effectively complete cytokinesis, ultimately leading to the accumulation of bi-nucleated cells. In silico analyses confirmed that the levels of regulators of cell cycle progression and chromosome segregation correlated with NCL abundance in TNBC patients. Finally, NCL degradation enhanced the activity of pharmaceutical inhibitors of cellular mitosis, such as the Anaphase Promoting Complex inhibitor APCin. Conclusions Our findings indicate a novel role for NCL in supporting the completion of the cell division in TNBC models, and that its abrogation could enhance the therapeutic activity of mitotic-progression inhibitors.

MBRLCatalogueRelatedBooks