MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Characterizing the distribution of neural and non-neural components in multi-echo EPI data across echo times based on tensor-ICA
Characterizing the distribution of neural and non-neural components in multi-echo EPI data across echo times based on tensor-ICA
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Characterizing the distribution of neural and non-neural components in multi-echo EPI data across echo times based on tensor-ICA
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Characterizing the distribution of neural and non-neural components in multi-echo EPI data across echo times based on tensor-ICA
Characterizing the distribution of neural and non-neural components in multi-echo EPI data across echo times based on tensor-ICA

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Characterizing the distribution of neural and non-neural components in multi-echo EPI data across echo times based on tensor-ICA
Characterizing the distribution of neural and non-neural components in multi-echo EPI data across echo times based on tensor-ICA
Journal Article

Characterizing the distribution of neural and non-neural components in multi-echo EPI data across echo times based on tensor-ICA

2025
Request Book From Autostore and Choose the Collection Method
Overview
•Tensor ICA can decompose multi-echo EPI data in time, space, and echo time domains.•Distribution across TEs separate BOLD and non-BOLD components of tensor ICA.•Elimination of the noise-related components enhances quality and activation patterns. Multi-echo echo-planar imaging (ME-EPI) acquires images at multiple echo times (TEs), enabling the differentiation of BOLD and non-BOLD fluctuations through TE-dependent analysis of transverse relaxation time and initial intensity. Decomposing ME-EPI in tensor space is a promising approach to characterize the distribution of changes across TEs (TE patterns) directly and aid the classification of components by providing information from an additional domain. In this study, the tensorial extension of independent component analysis (tensor-ICA) is used to characterize the TE patterns of neural and non-neural components in ME-EPI data. With the constraints of independent spatial maps, an ME-EPI dataset was decomposed into spatial, temporal, and TE domains to understand the TE patterns of noise or signal-related independent components. Our analysis revealed three distinct groups of components based on their TE patterns. Motion-related and other non-BOLD origin components followed decreased TE patterns. While the long-TE-peak components showed a large overlay on grey matter and signal patterns, the components that peaked at short TEs reflected noise that may be related to the vascular system, respiration, or cardiac pulsation, amongst others. Accordingly, removing short-TE peak components as part of a denoising strategy significantly improved quality control metrics and revealed clearer, more interpretable activation patterns compared to non-denoised data. To our knowledge, this work is the first application of decomposing ME-EPI in a tensor way. Our findings demonstrate that tensor-ICA is efficient in decomposing ME-EPI and characterizing the neural and non-neural TE patterns aiding in classifying components which is important for denoising fMRI data.