MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Smokescreen: a targeted genotyping array for addiction research
Smokescreen: a targeted genotyping array for addiction research
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Smokescreen: a targeted genotyping array for addiction research
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Smokescreen: a targeted genotyping array for addiction research
Smokescreen: a targeted genotyping array for addiction research

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Smokescreen: a targeted genotyping array for addiction research
Smokescreen: a targeted genotyping array for addiction research
Journal Article

Smokescreen: a targeted genotyping array for addiction research

2016
Request Book From Autostore and Choose the Collection Method
Overview
Background Addictive disorders are a class of chronic, relapsing mental disorders that are responsible for increased risk of mental and medical disorders and represent the largest, potentially modifiable cause of death. Tobacco dependence is associated with increased risk of disease and premature death. While tobacco control efforts and therapeutic interventions have made good progress in reducing smoking prevalence, challenges remain in optimizing their effectiveness based on patient characteristics, including genetic variation. In order to maximize collaborative efforts to advance addiction research, we have developed a genotyping array called Smokescreen. This custom array builds upon previous work in the analyses of human genetic variation, the genetics of addiction, drug metabolism, and response to therapy, with an emphasis on smoking and nicotine addiction. Results The Smokescreen genotyping array includes 646,247 markers in 23 categories. The array design covers genome-wide common variation (65.67, 82.37, and 90.72 % in African (YRI), East Asian (ASN), and European (EUR) respectively); most of the variation with a minor allele frequency ≥ 0.01 in 1014 addiction genes (85.16, 89.51, and 90.49 % for YRI, ASN, and EUR respectively); and nearly all variation from the 1000 Genomes Project Phase 1, NHLBI GO Exome Sequencing Project and HapMap databases in the regions related to smoking behavior and nicotine metabolism: CHRNA5-CHRNA3-CHRNB4 and CYP2A6-CYP2B6. Of the 636 pilot DNA samples derived from blood or cell line biospecimens that were genotyped on the array, 622 (97.80 %) passed quality control. In passing samples, 90.08 % of markers passed quality control. The genotype reproducibility in 25 replicate pairs was 99.94 %. For 137 samples that overlapped with HapMap2 release 24, the genotype concordance was 99.76 %. In a genome-wide association analysis of the nicotine metabolite ratio in 315 individuals participating in nicotine metabolism laboratory studies, we identified genome-wide significant variants in the CYP2A6 region (min p  = 9.10E-15). Conclusions We developed a comprehensive genotyping array for addiction research and demonstrated its analytic validity and utility through pilot genotyping of HapMap and study samples. This array allows researchers to perform genome-wide, candidate gene, and pathway-based association analyses of addiction, tobacco-use, treatment response, comorbidities, and associated diseases in a standardized, high-throughput platform.