MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
Journal Article

Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings

2019
Request Book From Autostore and Choose the Collection Method
Overview
Background Current approaches to identifying drug-drug interactions (DDIs), include safety studies during drug development and post-marketing surveillance after approval, offer important opportunities to identify potential safety issues, but are unable to provide complete set of all possible DDIs. Thus, the drug discovery researchers and healthcare professionals might not be fully aware of potentially dangerous DDIs. Predicting potential drug-drug interaction helps reduce unanticipated drug interactions and drug development costs and optimizes the drug design process. Methods for prediction of DDIs have the tendency to report high accuracy but still have little impact on translational research due to systematic biases induced by networked/paired data. In this work, we aimed to present realistic evaluation settings to predict DDIs using knowledge graph embeddings. We propose a simple disjoint cross-validation scheme to evaluate drug-drug interaction predictions for the scenarios where the drugs have no known DDIs. Results We designed different evaluation settings to accurately assess the performance for predicting DDIs. The settings for disjoint cross-validation produced lower performance scores, as expected, but still were good at predicting the drug interactions. We have applied Logistic Regression, Naive Bayes and Random Forest on DrugBank knowledge graph with the 10-fold traditional cross validation using RDF2Vec, TransE and TransD. RDF2Vec with Skip-Gram generally surpasses other embedding methods. We also tested RDF2Vec on various drug knowledge graphs such as DrugBank, PharmGKB and KEGG to predict unknown drug-drug interactions. The performance was not enhanced significantly when an integrated knowledge graph including these three datasets was used. Conclusion We showed that the knowledge embeddings are powerful predictors and comparable to current state-of-the-art methods for inferring new DDIs. We addressed the evaluation biases by introducing drug-wise and pairwise disjoint test classes. Although the performance scores for drug-wise and pairwise disjoint seem to be low, the results can be considered to be realistic in predicting the interactions for drugs with limited interaction information.