MbrlCatalogueTitleDetail

Do you wish to reserve the book?
An explainable CNN approach for medical codes prediction from clinical text
An explainable CNN approach for medical codes prediction from clinical text
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
An explainable CNN approach for medical codes prediction from clinical text
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
An explainable CNN approach for medical codes prediction from clinical text
An explainable CNN approach for medical codes prediction from clinical text

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
An explainable CNN approach for medical codes prediction from clinical text
An explainable CNN approach for medical codes prediction from clinical text
Journal Article

An explainable CNN approach for medical codes prediction from clinical text

2021
Request Book From Autostore and Choose the Collection Method
Overview
Background Clinical notes are unstructured text documents generated by clinicians during patient encounters, generally are annotated with International Classification of Diseases (ICD) codes, which give formatted information about the diagnosis and treatment. ICD code has shown its potentials in many fields, but manual coding is labor-intensive and error-prone, lead to researches of automatic coding. Two specific challenges of this task are (1) given an annotated clinical notes, the reasons behind specific diagnoses and treatments are  implicit; (2) explainability is important for practical automatic coding method, the method should not only explain its prediction output but also have explainable internal mechanics. This study aims to develop an explainable CNN approach to address these two challenges. Method Our key idea is that for the automatic ICD coding task, the presence of informative snippets in the clinical text that correlated with each code plays an important role in the prediction of codes, and an informative snippet can be considered as a local and low-level feature. We infer that there exists a correspondence between a convolution filter and a local and low-level feature. Base on the inference, we come up with the Shallow and Wide Attention convolutional Mechanism (SWAM) to improve the CNN-based models’ ability to learn local and low-level features for each label. Results We evaluate our approach on MIMIC-III, an open-access dataset of ICU medical records. Our approach substantially outperforms previous results on top-50 medical code prediction on MIMIC-III dataset, the precision of the worst-performing 10% labels in previous works is increased from 0% to 53% on average. We attribute this improvement to SWAM, by which the wide architecture with attention mechanism gives the model ability to more extensively learn the unique features of different codes, and we prove it by an ablation experiment. Besides, we perform manual analysis of the performance imbalance between different codes, and preliminary conclude the characteristics that determine the difficulty of learning specific codes. Conclusions Our main contributions can be summarized into the following three: (1) We present local and low-level features, a.k.a. informative snippets play an important role in the automatic ICD coding task, and the informative snippets extracted from the clinical text provide explanations for each code. (2) We propose that there exists a correspondence between a convolution filter and a local and low-level feature. A combination of wide and shallow convolutional layer and attention layer can help the CNN-based models better learn local and low-level features. (3) We improved the precision of the worst-performing 10% labels from 0 to 53% on average.