MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Utilization of gamma irradiated emulsified frying oil wastes as a carbon source for sustainable and economical production of bacterial cellulose membrane
Utilization of gamma irradiated emulsified frying oil wastes as a carbon source for sustainable and economical production of bacterial cellulose membrane
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Utilization of gamma irradiated emulsified frying oil wastes as a carbon source for sustainable and economical production of bacterial cellulose membrane
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Utilization of gamma irradiated emulsified frying oil wastes as a carbon source for sustainable and economical production of bacterial cellulose membrane
Utilization of gamma irradiated emulsified frying oil wastes as a carbon source for sustainable and economical production of bacterial cellulose membrane

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Utilization of gamma irradiated emulsified frying oil wastes as a carbon source for sustainable and economical production of bacterial cellulose membrane
Utilization of gamma irradiated emulsified frying oil wastes as a carbon source for sustainable and economical production of bacterial cellulose membrane
Journal Article

Utilization of gamma irradiated emulsified frying oil wastes as a carbon source for sustainable and economical production of bacterial cellulose membrane

2025
Request Book From Autostore and Choose the Collection Method
Overview
Background Bacterial cellulose (BC) is a nanofibrils macromolecule that possesses unique properties and versatile applications in various fields. For commercial production, agro-industrial wastes were used as sustainable and cost effective alternative sources. Annually, a great amount of frying oil wastes are produced worldwide and disposed illegally resulting in huge environmental disasters. In this regard, the study aimed to investigate the effect of different concentration and increasing doses of gamma irradiation on the potential utilization of emulsified FOW as carbon source for BC production. In addition to tracking the behavior of SCOBY and BCM formation process in the presence of FOW. Methodology The effect of different factors including; concentrations of FOW, incubation period emulsification ratios and gamma irradiation on BC production were investigated and estimated gravimetrically. In addition, the manner of the cellulose membrane formation was closely tracked and was documented by photos. Results The data proved that the symbiotic culture (SCOBY), has the ability to utilize frying oil wastes as a sole carbon source. Addition of 1% FOW resulted in (12.1%) increasing the BCM dry weight (2.81 to 3.15 gL- 1 in SWM, while the addition of 1% of the emulsified oil (FOW/E) recording (32.6%) increase in BC dry weight compared with control (5.33 and 4.02 gL- 1, respectively). Further increase in FOW/E concentration (> 2–5%) resulted in a significant gradual decreases (39%) in BC dry weight (from 5.33 to 3.25 gL- 1). Whereas, increasing the incubation period (21- days) resulted in a significant increase in BCM dry weight from 3.79 to 5.32 gL- 1 (40.4%). The effect of gamma irradiation (0–50 kGy) of FOW/E showed an increase in BCM dry weight (2.5%) at dose 10 kGy, while recorded (34.1%) increase compared with control (without FOW). The critical moments of SCOBY while struggling for surviving to gain the oxygen and nutrients required for BC biosynthesis in the presence of FOW have been documented photographically. Conclusion The present study positively contributes to the field of BC biosynthesis, where the FOW was added to the other agro-industrial wastes as a source of carbon for BC production, in addition to its potential application in the future in bioremediation for controlling environmental pollution.