MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima
Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima
Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima
Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima
Journal Article

Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima

2010
Request Book From Autostore and Choose the Collection Method
Overview
The relationships between damage-induced electropotential waves (EPWs), sieve tube occlusion, and stop of mass flow were investigated in intact Cucurbita maxima plants. After burning leaf tips, EPWs propagating along the phloem of the main vein were recorded by extra- and intracellular microelectrodes. The respective EPW profiles (a steep hyperpolarization/depolarization peak followed by a prolonged hyperpolarization/depolarization) probably reflect merged action and variation potentials. A few minutes after passage of the first EPW peak, sieve tubes gradually became occluded by callose, with maximum synthesis occurring ~10 min after burning. Early stop of mass flow, well before completion of callose deposition, pointed to an occlusion mechanism preceding callose deposition. This obstruction of mass flow was inferred from the halt of carboxyfluorescein movement in sieve tubes and intensified secretion of aqueous saliva by feeding aphids. The early occlusion is probably due to proteins, as indicated by a dramatic drop in soluble sieve element proteins and a simultaneous coagulation of sieve element proteins shortly after the burning stimulus. Mass flow resumed 30-40 min after burning, as demonstrated by carboxyfluorescein movement and aphid activities. Stop of mass flow by Ca²⁺-dependent occlusion mechanisms is attributed to Ca²⁺ influx during EPW passage; the reversibility of the occlusion is explained by removal of Ca²⁺ ions.