MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Implications of human evolution and admixture for mitochondrial replacement therapy
Implications of human evolution and admixture for mitochondrial replacement therapy
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Implications of human evolution and admixture for mitochondrial replacement therapy
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Implications of human evolution and admixture for mitochondrial replacement therapy
Implications of human evolution and admixture for mitochondrial replacement therapy

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Implications of human evolution and admixture for mitochondrial replacement therapy
Implications of human evolution and admixture for mitochondrial replacement therapy
Journal Article

Implications of human evolution and admixture for mitochondrial replacement therapy

2017
Request Book From Autostore and Choose the Collection Method
Overview
Background Mitochondrial replacement (MR) therapy is a new assisted reproductive technology that allows women with mitochondrial disorders to give birth to healthy children by combining their nuclei with mitochondria from unaffected egg donors. Evolutionary biologists have raised concerns about the safety of MR therapy based on the extent to which nuclear and mitochondrial genomes are observed to co-evolve within natural populations, i.e. the nuclear-mitochondrial mismatch hypothesis. In support of this hypothesis, a number of previous studies on model organisms have provided evidence for incompatibility between nuclear and mitochondrial genomes from divergent populations of the same species. Results We tested the nuclear-mitochondrial mismatch hypothesis for humans by observing the extent of naturally occurring nuclear-mitochondrial mismatch seen for 2,504 individuals across 26 populations, from 5 continental populations groups, characterized as part of the 1000 Genomes Project (1KGP). We also performed a replication analysis on mitochondrial DNA (mtDNA) haplotypes for 1,043 individuals from 58 populations, characterized as part of the Human Genome Diversity Project (HGDP). Nuclear DNA (nDNA) and mtDNA sequences from the 1KGP were directly compared within and between populations, and the population distributions of mtDNA haplotypes derived from both sequence (1KGP) and genotype (HGDP) data were evaluated. Levels of nDNA and mtDNA pairwise sequence divergence are highly correlated, consistent with their co-evolution among human populations. However, there are numerous cases of co-occurrence of nuclear and mitochondrial genomes from divergent populations within individual humans. Furthermore, pairs of individuals with closely related nuclear genomes can have highly divergent mtDNA haplotypes. Supposedly mismatched nuclear-mitochondrial genome combinations are found not only within individuals from populations known to be admixed, where they may be expected, but also from populations with low overall levels of observed admixture. Conclusions These results show that mitochondrial and nuclear genomes from divergent human populations can co-exist within healthy individuals, indicating that mismatched nDNA-mtDNA combinations are not deleterious or subject to purifying selection. Accordingly, human nuclear-mitochondrial mismatches are not likely to jeopardize the safety of MR therapy.