MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium
Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium
Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium
Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium
Journal Article

Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium

2016
Request Book From Autostore and Choose the Collection Method
Overview
A major unresolved issue in the cloning of mammals by somatic cell nuclear transfer (SCNT) is the mechanism by which the process fails after embryos are transferred to the uterus of recipients before or during the implantation window. We investigated this problem by using RNA sequencing (RNA-seq) to compare the transcriptomes in cattle conceptuses produced by SCNT and artificial insemination (AI) at day (d) 18 (preimplantation) and d 34 (postimplantation) of gestation. In addition, endometrium was profiled to identify the communication pathways that might be affected by the presence of a cloned conceptus, ultimately leading to mortality before or during the implantation window. At d 18, the effects on the transcriptome associated with SCNT were massive, involving more than 5,000 differentially expressed genes (DEGs). Among them are 121 genes that have embryonic lethal phenotypes in mice, cause defects in trophoblast and placental development, and/or affect conceptus survival in mice. In endometria at d 18, <0.4% of expressed genes were affected by the presence of a cloned conceptus, whereas at d 34, ∼36% and <0.7% of genes were differentially expressed in intercaruncular and caruncular tissues, respectively. Functional analysis of DEGs in placental and endometrial tissues suggests a major disruption of signaling between the cloned conceptus and the endometrium, particularly the intercaruncular tissue. Our results support a \"bottleneck\" model for cloned conceptus survival during the periimplantation period determined by gene expression levels in extraembryonic tissues and the endometrial response to altered signaling from clones.