MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Three-dimensional fractal dimension and lacunarity features may noninvasively predict TERT promoter mutation status in grade 2 meningiomas
Three-dimensional fractal dimension and lacunarity features may noninvasively predict TERT promoter mutation status in grade 2 meningiomas
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Three-dimensional fractal dimension and lacunarity features may noninvasively predict TERT promoter mutation status in grade 2 meningiomas
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Three-dimensional fractal dimension and lacunarity features may noninvasively predict TERT promoter mutation status in grade 2 meningiomas
Three-dimensional fractal dimension and lacunarity features may noninvasively predict TERT promoter mutation status in grade 2 meningiomas

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Three-dimensional fractal dimension and lacunarity features may noninvasively predict TERT promoter mutation status in grade 2 meningiomas
Three-dimensional fractal dimension and lacunarity features may noninvasively predict TERT promoter mutation status in grade 2 meningiomas
Journal Article

Three-dimensional fractal dimension and lacunarity features may noninvasively predict TERT promoter mutation status in grade 2 meningiomas

2022
Request Book From Autostore and Choose the Collection Method
Overview
The 2021 World Health Organization classification includes telomerase reverse transcriptase promoter (TERTp) mutation status as a factor for differentiating meningioma grades. Therefore, preoperative prediction of TERTp mutation may assist in clinical decision making. However, no previous study has applied fractal analysis for TERTp mutation status prediction in meningiomas. The purpose of this study was to assess the utility of three-dimensional (3D) fractal analysis for predicting the TERTp mutation status in grade 2 meningiomas. Forty-eight patients with surgically confirmed grade 2 meningiomas (41 TERTp-wildtype and 7 TERTp-mutant) were included. 3D fractal dimension (FD) and lacunarity values were extracted from the fractal analysis. A predictive model combining clinical, conventional, and fractal parameters was built using logistic regression analysis. Receiver operating characteristic curve analysis was used to assess the ability of the model to predict TERTp mutation status. Patients with TERTp-mutant grade 2 meningiomas were older (P = 0.029) and had higher 3D FD (P = 0.026) and lacunarity (P = 0.004) values than patients with TERTp-wildtype grade 2 meningiomas. On multivariable logistic analysis, higher 3D FD values (odds ratio = 32.50, P = 0.039) and higher 3D lacunarity values (odds ratio = 20.54, P = 0.014) were significant predictors of TERTp mutation status. The area under the curve, accuracy, sensitivity, and specificity of the multivariable model were 0.84 (95% confidence interval 0.71-0.93), 83.3%, 71.4%, and 85.4%, respectively. 3D FD and lacunarity may be useful imaging biomarkers for predicting TERTp mutation status in grade 2 meningiomas.