MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids
Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids
Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids
Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids
Journal Article

Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids

2021
Request Book From Autostore and Choose the Collection Method
Overview
Three-dimensional brain organoids have emerged as a valuable model system for studies of human brain development and pathology. Here we establish a midbrain organoid culture system to study the developmental trajectory from pluripotent stem cells to mature dopamine neurons. Using single cell RNA sequencing, we identify the presence of three molecularly distinct subtypes of human dopamine neurons with high similarity to those in developing and adult human midbrain. However, despite significant advancements in the field, the use of brain organoids can be limited by issues of reproducibility and incomplete maturation which was also observed in this study. We therefore designed bioengineered ventral midbrain organoids supported by recombinant spider-silk microfibers functionalized with full-length human laminin. We show that silk organoids reproduce key molecular aspects of dopamine neurogenesis and reduce inter-organoid variability in terms of cell type composition and dopamine neuron formation. 3D brain organoids have been used to investigate human brain development and pathology. Here the authors establish human ventral midbrain organoids coupled with single cell sequencing to study developing and mature dopamine neurons and use silk scaffolding to generate bioengineered brain organoids