MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Transcriptional Regulation of Mesoderm Genes by MEF2D during Early Xenopus Development
Transcriptional Regulation of Mesoderm Genes by MEF2D during Early Xenopus Development
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Transcriptional Regulation of Mesoderm Genes by MEF2D during Early Xenopus Development
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Transcriptional Regulation of Mesoderm Genes by MEF2D during Early Xenopus Development
Transcriptional Regulation of Mesoderm Genes by MEF2D during Early Xenopus Development

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Transcriptional Regulation of Mesoderm Genes by MEF2D during Early Xenopus Development
Transcriptional Regulation of Mesoderm Genes by MEF2D during Early Xenopus Development
Journal Article

Transcriptional Regulation of Mesoderm Genes by MEF2D during Early Xenopus Development

2013
Request Book From Autostore and Choose the Collection Method
Overview
In Xenopus, specification of the three germ layers is one of the earliest developmental decisions occurring prior to gastrulation. The maternally-expressed vegetally-localized transcription factor VegT has a central role in cell autonomous specification of endoderm and in the generation of mesoderm-inducing signals. Yet, marginally-expressed transcription factors that cooperate with mesoderm-inducing signals are less investigated. Here we report that the transcription factors MEF2A and MEF2D are expressed in the animal hemisphere before mid-blastula transition. At the initiation of zygotic transcription, expression of MEF2D expands into the marginal region that gives rise to mesoderm. Knockdown of MEF2D delayed gastrulation movements, prevented embryo elongation at the subsequent tailbud stage and caused severe defects in axial tissues. At the molecular level, MEF2D knockdown reduced the expression of genes involved in mesoderm formation and patterning. We also report that MEF2D functions with FGF signaling in a positive feedback loop; each augments the expression of the other in the marginal region and both are necessary for mesodermal gene expression. One target of MEF2D is the Nodal-related 1 gene (Xnr1) that mediates some of MEF2D mesodermal activities. Chromatin immunoprecipitation analysis revealed that MEF2D associates with transcriptional regulatory sequences of the Xnr1 gene. Several MEF2 binding sites within the proximal promoter region of Xnr1 were identified by their in vitro association with MEF2D protein. The same promoter region was necessary but not sufficient to mediate MEF2D activity in a reporter gene assay. In sum, our results indicate that the MEF2D protein is a key transcription factor in the marginal zone acting in a positive feedback loop with FGF signaling that promotes mesoderm specification at late blastula stages.
Publisher
Public Library of Science,Public Library of Science (PLoS)

MBRLCatalogueRelatedBooks