MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Enzymatic characterization and polyurethane biodegradation assay of two novel esterases isolated from a polluted river
Enzymatic characterization and polyurethane biodegradation assay of two novel esterases isolated from a polluted river
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Enzymatic characterization and polyurethane biodegradation assay of two novel esterases isolated from a polluted river
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Enzymatic characterization and polyurethane biodegradation assay of two novel esterases isolated from a polluted river
Enzymatic characterization and polyurethane biodegradation assay of two novel esterases isolated from a polluted river

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Enzymatic characterization and polyurethane biodegradation assay of two novel esterases isolated from a polluted river
Enzymatic characterization and polyurethane biodegradation assay of two novel esterases isolated from a polluted river
Journal Article

Enzymatic characterization and polyurethane biodegradation assay of two novel esterases isolated from a polluted river

2025
Request Book From Autostore and Choose the Collection Method
Overview
The environmental ubiquity of plastic materials generates global concern, pollution, and health problems. Microorganisms and enzymes with plastic biodegradation potential are considered as environmentally friendly alternatives to address these issues. Interestingly, polluted environments exert selective pressure on native microbial communities that have the metabolic capacity to tolerate and transform different contaminants, including plastics. A number of enzymes have been described as polyurethane degraders. However, some of them do not possess complete characterization or efficient degradation rates. Hence, there is still a need to identify and characterize efficient enzymes for application in green processes for plastic recycling. Here, we used an environmental DNA sample isolated from the sediments of a polluted river in Mexico (Apatlaco River), which was used to construct a metagenomic fosmid library to explore the metabolic potential of microbial communities for polyurethane biodegradation. Functional screenings were performed on agar media containing the polyester polyurethane Impranil DLN (Impranil), and positively selected fosmid DNA was identified and sequenced by Illumina. Bioinformatic analyses identified two Acinetobacter genes ( epux1 and epux2) encoding alpha/beta hydrolases. The genes were heterologously expressed to determine the capacity of their encoded proteins for Impranil clearing. Both Epux1 and Epux2 enzymes exhibited Impranil cleavage at 30 °C and 15 °C and ester group modifications were validated by infrared spectroscopy. Furthermore, the release of building blocks of the polymer was determined by GC-MS analysis, thus indicating their esterase/polyurethanase activity. Overall, our results demonstrate the potential of these novel bacterial enzymes for the hydrolysis of polyurethane with potential applications in the circular plastics economy.