MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Enhancing insights in sexually transmitted infection mapping: Syphilis in Forsyth County, North Carolina, a case study
Enhancing insights in sexually transmitted infection mapping: Syphilis in Forsyth County, North Carolina, a case study
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Enhancing insights in sexually transmitted infection mapping: Syphilis in Forsyth County, North Carolina, a case study
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Enhancing insights in sexually transmitted infection mapping: Syphilis in Forsyth County, North Carolina, a case study
Enhancing insights in sexually transmitted infection mapping: Syphilis in Forsyth County, North Carolina, a case study

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Enhancing insights in sexually transmitted infection mapping: Syphilis in Forsyth County, North Carolina, a case study
Enhancing insights in sexually transmitted infection mapping: Syphilis in Forsyth County, North Carolina, a case study
Journal Article

Enhancing insights in sexually transmitted infection mapping: Syphilis in Forsyth County, North Carolina, a case study

2024
Request Book From Autostore and Choose the Collection Method
Overview
In 2008–2011 Forsyth County, North Carolina (NC) experienced a four-fold increase in syphilis rising to over 35 cases per 100,000 mirroring the 2021 state syphilis rate. Our methodology extends current models with: 1) donut geomasking to enhance resolution while protecting patient privacy; 2) a moving window uniform grid to control the modifiable areal unit problem, edge effect and remove kriging islands; and 3) mitigating the “small number problem” with Uniform Model Bayesian Maximum Entropy (UMBME). Data is 2008–2011 early syphilis cases reported to the NC Department of Health and Human Services for Forsyth County. Results were assessed using latent rate theory cross validation. We show combining a moving window and a UMBME analysis with geomasked data effectively predicted the true or latent syphilis rate 5% to 26% more accurate than the traditional, geopolitical boundary method. It removed kriging islands, reduced background incidence rate to 0, relocated nine outbreak hotspots to more realistic locations, and elucidated hotspot connectivity producing more realistic geographical patterns for targeted insights. Using the Forsyth outbreak as a case study showed how the outbreak emerged from endemic areas spreading through sexual core transmitters and contextualizing the outbreak to current and past outbreaks. As the dynamics of sexually transmitted infections spread have changed to online partnership selection and demographically to include more women, partnership selection continues to remain highly localized. Furthermore, it is important to present methods to increase interpretability and accuracy of visual representations of data.