MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition
The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition
The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition
The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition
Journal Article

The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition

2015
Request Book From Autostore and Choose the Collection Method
Overview
For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans exhibit two stable yet epigenetically distinct states of pluripotency: naive and primed. We now show that nicotinamide N -methyltransferase (NNMT) and the metabolic state regulate pluripotency in human embryonic stem cells (hESCs). Specifically, in naive hESCs, NNMT and its enzymatic product 1-methylnicotinamide are highly upregulated, and NNMT is required for low S -adenosyl methionine (SAM) levels and the H3K27me3 repressive state. NNMT consumes SAM in naive cells, making it unavailable for histone methylation that represses Wnt and activates the HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development. By comparing the metabolomes, transcriptomes and epigenomes of human pluripotent stem cell lines, Sperber et al.  show that interplay between the metabolome and histone modifications drives the metabolic switch from naive to primed pluripotency.