MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Impact of population mixing between vaccinated and unvaccinated subpopulations on infectious disease dynamics: implications for SARS-CoV-2 transmission
Impact of population mixing between vaccinated and unvaccinated subpopulations on infectious disease dynamics: implications for SARS-CoV-2 transmission
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Impact of population mixing between vaccinated and unvaccinated subpopulations on infectious disease dynamics: implications for SARS-CoV-2 transmission
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Impact of population mixing between vaccinated and unvaccinated subpopulations on infectious disease dynamics: implications for SARS-CoV-2 transmission
Impact of population mixing between vaccinated and unvaccinated subpopulations on infectious disease dynamics: implications for SARS-CoV-2 transmission

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Impact of population mixing between vaccinated and unvaccinated subpopulations on infectious disease dynamics: implications for SARS-CoV-2 transmission
Impact of population mixing between vaccinated and unvaccinated subpopulations on infectious disease dynamics: implications for SARS-CoV-2 transmission
Journal Article

Impact of population mixing between vaccinated and unvaccinated subpopulations on infectious disease dynamics: implications for SARS-CoV-2 transmission

2022
Request Book From Autostore and Choose the Collection Method
Overview
The speed of vaccine development has been a singular achievement during the COVID-19 pandemic, although uptake has not been universal. Vaccine opponents often frame their opposition in terms of the rights of the unvaccinated. We sought to explore the impact of mixing of vaccinated and unvaccinated populations on risk of SARS-CoV-2 infection among vaccinated people. We constructed a simple susceptible–infectious–recovered compartmental model of a respiratory infectious disease with 2 connected subpopulations: people who were vaccinated and those who were unvaccinated. We simulated a spectrum of patterns of mixing between vaccinated and unvaccinated groups that ranged from random mixing to complete like-with-like mixing (complete assortativity), in which people have contact exclusively with others with the same vaccination status. We evaluated the dynamics of an epidemic within each subgroup and in the population as a whole. We found that the risk of infection was markedly higher among unvaccinated people than among vaccinated people under all mixing assumptions. The contact-adjusted contribution of unvaccinated people to infection risk was disproportionate, with unvaccinated people contributing to infections among those who were vaccinated at a rate higher than would have been expected based on contact numbers alone. We found that as like-with-like mixing increased, attack rates among vaccinated people decreased from 15% to 10% (and increased from 62% to 79% among unvaccinated people), but the contact-adjusted contribution to risk among vaccinated people derived from contact with unvaccinated people increased. Although risk associated with avoiding vaccination during a virulent pandemic accrues chiefly to people who are unvaccinated, their choices affect risk of viral infection among those who are vaccinated in a manner that is disproportionate to the portion of unvaccinated people in the population.