MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Cytotoxicity activities and chemical characteristics of exopolysaccharides and intracellular polysaccharides of Physarum polycephalum microplasmodia
Cytotoxicity activities and chemical characteristics of exopolysaccharides and intracellular polysaccharides of Physarum polycephalum microplasmodia
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Cytotoxicity activities and chemical characteristics of exopolysaccharides and intracellular polysaccharides of Physarum polycephalum microplasmodia
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Cytotoxicity activities and chemical characteristics of exopolysaccharides and intracellular polysaccharides of Physarum polycephalum microplasmodia
Cytotoxicity activities and chemical characteristics of exopolysaccharides and intracellular polysaccharides of Physarum polycephalum microplasmodia

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Cytotoxicity activities and chemical characteristics of exopolysaccharides and intracellular polysaccharides of Physarum polycephalum microplasmodia
Cytotoxicity activities and chemical characteristics of exopolysaccharides and intracellular polysaccharides of Physarum polycephalum microplasmodia
Journal Article

Cytotoxicity activities and chemical characteristics of exopolysaccharides and intracellular polysaccharides of Physarum polycephalum microplasmodia

2021
Request Book From Autostore and Choose the Collection Method
Overview
Background Microbial polysaccharides have been reported to possess remarkable bioactivities. Physarum polycephalum is a species of slime mold for which the microplasmodia are capable of rapid growth and can produce a significant amount of cell wall-less biomass. There has been a limited understanding of the polysaccharides produced by microplasmodia of slime molds, including P. polycephalum . Thus, the primary objectives of this research were first to chemically characterize the exopolysaccharides (EPS) and intracellular polysaccharides (IPS) of P. polycephalum microplasmodia and then to evaluate their cytotoxicity against several cancer cell lines. Results The yields of the crude EPS (4.43 ± 0.44 g/l) and partially purified (deproteinated) EPS (2.95  ±  0.85 g/l) were comparable ( p  > 0.05) with the respective crude IPS (3.46 ± 0.36 g/l) and partially purified IPS (2.45 ± 0.36 g/l). The average molecular weight of the EPS and IPS were 14,762 kDa and 1788 kDa. The major monomer of the EPS was galactose (80.22%), while that of the IPS was glucose (84.46%). Both crude and purified IPS samples showed significantly higher cytotoxicity toward Hela cells, especially the purified sample and none of the IPSs inhibited normal cells. Only 38.42 ± 2.84% Hela cells remained viable when treated with the partially purified IPS (1 mg/ml). However, although only 34.76 ± 6.58% MCF-7 cells were viable when exposed to the crude IPS, but the partially purified IPS displayed non-toxicity to MCF-7 cells. This suggested that the cytotoxicity toward MCF-7 would come from some component associated with the crude IPS sample (e.g. proteins, peptides or ion metals) and the purification process would have either completely removed or reduced amount of that component. Cell cycle analysis by flow cytometry suggested that the mechanism of the toxicity of the crude IPS toward MCF-7 and the partially purified IPS toward Hela cells was due to apoptosis. Conclusions The EPS and IPS of P. polycephalum microplasmodia had different chemical properties including carbohydrate, protein and total sulfate group contents, monosaccharide composition and molecular weights, which led to different cytotoxicity activities. The crude and partially purified IPSs would be potential materials for further study relating to cancer treatment.