MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Exploring drought tolerance for germination traits of diverse wheat genotypes at seedling stage: a multivariate analysis approach
Exploring drought tolerance for germination traits of diverse wheat genotypes at seedling stage: a multivariate analysis approach
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Exploring drought tolerance for germination traits of diverse wheat genotypes at seedling stage: a multivariate analysis approach
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Exploring drought tolerance for germination traits of diverse wheat genotypes at seedling stage: a multivariate analysis approach
Exploring drought tolerance for germination traits of diverse wheat genotypes at seedling stage: a multivariate analysis approach

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Exploring drought tolerance for germination traits of diverse wheat genotypes at seedling stage: a multivariate analysis approach
Exploring drought tolerance for germination traits of diverse wheat genotypes at seedling stage: a multivariate analysis approach
Journal Article

Exploring drought tolerance for germination traits of diverse wheat genotypes at seedling stage: a multivariate analysis approach

2025
Request Book From Autostore and Choose the Collection Method
Overview
Wheat holds crucial global importance as a staple food in many regions. Drought stress significantly impedes seed germination of wheat. The lack of drought-tolerant wheat varieties hampers wheat production, especially in arid regions of the world. This study investigated seed germination and seedling growth in eighty wheat genotypes under moisture stress stimulated by polyethylene glycol (PEG 6000 ). The study included two osmotic potentials induced by PEG-20% (ψ: -0.491 MPa) and PEG-25% (ψ: -0.735 MPa), as well as a control set without PEG. The data showed that dehydration caused by polyethylene glycol generally had an adverse effect on the morphological characteristics of wheat seedlings by causing substantial losses during the early germination stage. The results acquired from analysis of variance explained highly significant variances ( p  < 0.01) across genotypes (G), PEG-Treatments (T PEG ), and interactions between genotypes and PEG-Treatments (G x T PEG ) for all observed variables. Moisture deficit radically affected all studied seedling traits of bread wheat under rising osmotic stress, with germination percentage (GP), shoot length (SL), root length (RL), coleoptile length (CL), seedling length (SDL), root fresh weight (FRW), root dry weight (DRW), shoot fresh weight (FSW), shoot dry weight (DSW), seedling biomass (SBM) and seedling vigor index (SVI) reduced by about 30–95% compared to control (PEG-0%) to the maximum induced osmotic stress at -0.735 MPa. The coefficient of relative inhibition (CRI) rose in response to osmotic stress, demonstrating growth inhibition. Boxplots demonstrated a considerable decline under stress, although scatter plots and correlation matrices revealed significant positive associations for most seedling traits, except CRI. The histograms for most variables showed a wider value range and more diversified distribution patterns. Principal component analysis (PCA) and genotype by trait biplot emphasized that PC1 represented 94.29% of the cumulative variation, with an eigenvalue of 11.31 out of 12 components. The heatmap displayed diverse genotype and trait characteristics, indicating higher values for drought resistance and lower values for susceptibility in genotype performance. As indicated by a range of multivariate analyses, the wheat lines NR-499, NARC-2009 and Pakistan-2013 stood out as the most drought-tolerant among the genotypes; whereas Borlaug-2016, NR-514 and NR-516 were found to be highly susceptible, whereas SBM, SDL, SVI and CRI have been found key indicators for subsequent screening. These tolerant wheat lines offer promising potential for developing drought-tolerant varieties that could thrive in arid regions, thereby strengthening wheat production in water-stressed environments. Integrating these findings into breeding programs is crucial for realizing the potential of drought-tolerant wheat varieties in transforming global wheat production.

MBRLCatalogueRelatedBooks