MbrlCatalogueTitleDetail

Do you wish to reserve the book?
TcMYB73, a salicylic acid-responsive R2R3-MYB transcription factor, positively regulates paclitaxel biosynthesis in Taxus chinensis in direct and indirect ways
TcMYB73, a salicylic acid-responsive R2R3-MYB transcription factor, positively regulates paclitaxel biosynthesis in Taxus chinensis in direct and indirect ways
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
TcMYB73, a salicylic acid-responsive R2R3-MYB transcription factor, positively regulates paclitaxel biosynthesis in Taxus chinensis in direct and indirect ways
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
TcMYB73, a salicylic acid-responsive R2R3-MYB transcription factor, positively regulates paclitaxel biosynthesis in Taxus chinensis in direct and indirect ways
TcMYB73, a salicylic acid-responsive R2R3-MYB transcription factor, positively regulates paclitaxel biosynthesis in Taxus chinensis in direct and indirect ways

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
TcMYB73, a salicylic acid-responsive R2R3-MYB transcription factor, positively regulates paclitaxel biosynthesis in Taxus chinensis in direct and indirect ways
TcMYB73, a salicylic acid-responsive R2R3-MYB transcription factor, positively regulates paclitaxel biosynthesis in Taxus chinensis in direct and indirect ways
Journal Article

TcMYB73, a salicylic acid-responsive R2R3-MYB transcription factor, positively regulates paclitaxel biosynthesis in Taxus chinensis in direct and indirect ways

2025
Request Book From Autostore and Choose the Collection Method
Overview
Background Paclitaxel (Taxol) is an invaluable secondary metabolite extracted from Taxus species, wildly utilized in cancer therapeutics. Salicylic acid (SA), an important phytohormone, substantially elevates paclitaxel accumulation in Taxus cell suspension cultures. However, the molecular mechanisms governing SA-induced modulation of paclitaxel biosynthesis remain poorly elucidated. Our previous studies identified TcMYB73, an SA-responsive R2R3-MYB transcription factor (TF), which demonstrates a robust positive correlation with paclitaxel biosynthesis, implying its orchestrating role in this metabolic pathway. Results Expression pattern analysis revealed that TcMYB73 displays predominant expression in lateral roots. Both overexpression and RNA interference (RNAi) of TcMYB73 demonstrated its regulatory function in modulating key paclitaxel biosynthetic genes, including taxadiene synthase ( TASY ), 10-deacetylbaccatin III-10-O-acetyltransferase ( DBAT ), and 3’-N-debenzoyl-2’-deoxytaxol-N-benzoyltransferase ( DBTNBT ). Transient TcMYB73 overexpression in Taxus chinensis ( T. chinensis) needles induced 2.38-, 2.87-, and 1.79-fold increases in 10-DAB, baccatin III, and paclitaxel accumulation, respectively, compared to controls. Additionally, yeast one-hybrid (Y1H), Electrophoretic Mobility Shift Assay (EMSA), chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR), and dual-luciferase (Dual-LUC) assays verified that TcMYB73 directly binds to MYB recognition elements in the T10OH promoter, enhancing its transcription. Furthermore, TcWRKY33 , a transcriptional activator of DBAT , functions as a positive regulator mediating SA signaling within the paclitaxel biosynthetic pathway. Subsequent investigations validated that TcMYB73 upregulates DBAT expression via direct transcriptional activation of TcWRKY33 . Collectively, these results demonstrate that TcMYB73 transduces SA signals to T10OH and TcWRKY33 , coordinately regulating paclitaxel biosynthesis through dual mechanisms: direct activation of biosynthetic genes and indirect modulation of upstream regulators. Conclusions Our results indicated that the SA-responsive R2R3-MYB TF, TcMYB73 transcriptionally governs paclitaxel biosynthesis in T. chinensis through direct activation the expression of the T10OH gene, and activating TcWRKY33 expression, thereby modulating DBAT expression. This study provides mechanistic insights into the role of TcMYB73 in mediating SA-induced transcriptional regulation of paclitaxel biosynthesis in Taxus species.

MBRLCatalogueRelatedBooks