MbrlCatalogueTitleDetail

Do you wish to reserve the book?
RETRACTED: Rosmarinic Acid Attenuates the Lipopolysaccharide-Provoked Inflammatory Response of Vascular Smooth Muscle Cell via Inhibition of MAPK/NF-κB Cascade
RETRACTED: Rosmarinic Acid Attenuates the Lipopolysaccharide-Provoked Inflammatory Response of Vascular Smooth Muscle Cell via Inhibition of MAPK/NF-κB Cascade
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
RETRACTED: Rosmarinic Acid Attenuates the Lipopolysaccharide-Provoked Inflammatory Response of Vascular Smooth Muscle Cell via Inhibition of MAPK/NF-κB Cascade
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
RETRACTED: Rosmarinic Acid Attenuates the Lipopolysaccharide-Provoked Inflammatory Response of Vascular Smooth Muscle Cell via Inhibition of MAPK/NF-κB Cascade
RETRACTED: Rosmarinic Acid Attenuates the Lipopolysaccharide-Provoked Inflammatory Response of Vascular Smooth Muscle Cell via Inhibition of MAPK/NF-κB Cascade

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
RETRACTED: Rosmarinic Acid Attenuates the Lipopolysaccharide-Provoked Inflammatory Response of Vascular Smooth Muscle Cell via Inhibition of MAPK/NF-κB Cascade
RETRACTED: Rosmarinic Acid Attenuates the Lipopolysaccharide-Provoked Inflammatory Response of Vascular Smooth Muscle Cell via Inhibition of MAPK/NF-κB Cascade
Journal Article

RETRACTED: Rosmarinic Acid Attenuates the Lipopolysaccharide-Provoked Inflammatory Response of Vascular Smooth Muscle Cell via Inhibition of MAPK/NF-κB Cascade

2022
Request Book From Autostore and Choose the Collection Method
Overview
Rosmarinic acid (RA) is a phenolic compound that has several bioactivities, such as anti-inflammatory and antioxidant activities. Here, we further investigate the anti-inflammatory effect of RA on rat A7r5 aortic smooth muscle cells with exposure to lipopolysaccharide (LPS). Our findings showed that low-dose RA (10-25 μM) did not influence the cell viability and morphology of A7r5 cells and significantly inhibited LPS-induced mRNA expression of the pro-inflammatory mediators TNFα, IL-8, and inducible NO synthase (iNOS). Consistently, RA reduced the production of TNFα, IL-8, and NO by A7r5 cells with exposure to LPS. Signaling cascade analysis showed that LPS induced activation of Erk, JNK, p38 mitogen-activated protein kinase (MAPK), and NF-κB, and RA treatments attenuated the activation of the three MAPKs and NF-κB. Moreover, cotreatment with RA and Erk, JNK, p38 MAPK, or NF-κB inhibitors further downregulated the mRNA expression of TNFα, IL-8, and iNOS, and decreased the production of TNFα, IL-8, and NO by A7r5 cells. Taken together, these findings indicate that RA may ameliorate the LPS-provoked inflammatory response of vascular smooth muscle cells by inhibition of MAPK/NF-κB signaling.

MBRLCatalogueRelatedBooks