Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Implicit sequence learning in people with Parkinson's disease
by
Gamble, Katherine R
, Cummings, Jr, Thomas J
, Howard, Jr, James H
, Ghosh, Pritha T
, Lo, Steven E
, Howard, Darlene V
in
Adults
/ Age differences
/ Aging
/ Dopamine
/ Hippocampus
/ implicit learning
/ implicit sequence learning
/ Learning
/ Motor skill learning
/ Movement disorders
/ Neostriatum
/ Neurodegeneration
/ Neurodegenerative diseases
/ Neuroscience
/ Older people
/ Parkinson's disease
/ sequence learning
/ Substantia alba
2014
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Implicit sequence learning in people with Parkinson's disease
by
Gamble, Katherine R
, Cummings, Jr, Thomas J
, Howard, Jr, James H
, Ghosh, Pritha T
, Lo, Steven E
, Howard, Darlene V
in
Adults
/ Age differences
/ Aging
/ Dopamine
/ Hippocampus
/ implicit learning
/ implicit sequence learning
/ Learning
/ Motor skill learning
/ Movement disorders
/ Neostriatum
/ Neurodegeneration
/ Neurodegenerative diseases
/ Neuroscience
/ Older people
/ Parkinson's disease
/ sequence learning
/ Substantia alba
2014
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Implicit sequence learning in people with Parkinson's disease
by
Gamble, Katherine R
, Cummings, Jr, Thomas J
, Howard, Jr, James H
, Ghosh, Pritha T
, Lo, Steven E
, Howard, Darlene V
in
Adults
/ Age differences
/ Aging
/ Dopamine
/ Hippocampus
/ implicit learning
/ implicit sequence learning
/ Learning
/ Motor skill learning
/ Movement disorders
/ Neostriatum
/ Neurodegeneration
/ Neurodegenerative diseases
/ Neuroscience
/ Older people
/ Parkinson's disease
/ sequence learning
/ Substantia alba
2014
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Implicit sequence learning in people with Parkinson's disease
Journal Article
Implicit sequence learning in people with Parkinson's disease
2014
Request Book From Autostore
and Choose the Collection Method
Overview
Implicit sequence learning involves learning about dependencies in sequences of events without intent to learn or awareness of what has been learned. Sequence learning is related to striatal dopamine levels, striatal activation, and integrity of white matter connections. People with Parkinson's disease (PD) have degeneration of dopamine-producing neurons, leading to dopamine deficiency and therefore striatal deficits, and they have difficulties with sequencing, including complex language comprehension and postural stability. Most research on implicit sequence learning in PD has used motor-based tasks. However, because PD presents with motor deficits, it is difficult to assess whether learning itself is impaired in these tasks. The present study used an implicit sequence learning task with a reduced motor component, the Triplets Learning Task (TLT). People with PD and age- and education-matched healthy older adults completed three sessions (each consisting of 10 blocks of 50 trials) of the TLT. Results revealed that the PD group was able to learn the sequence, however, when learning was examined using a Half Blocks analysis (Nemeth et al., 2013), which compared learning in the 1st 25/50 trials of all blocks to that in the 2nd 25/50 trials, the PD group showed significantly less learning than Controls in the 2nd Half Blocks, but not in the 1st. Nemeth et al. (2013) hypothesized that the 1st Half Blocks involve recall and reactivation of the sequence learned, thus reflecting hippocampal-dependent learning, while the 2nd Half Blocks involve proceduralized behavior of learned sequences, reflecting striatal-based learning. The present results suggest that the PD group had intact hippocampal-dependent implicit sequence learning, but impaired striatal-dependent learning. Thus, sequencing deficits in PD are likely due to striatal impairments, but other brain systems, such as the hippocampus, may be able to partially compensate for striatal decline to improve performance.
This website uses cookies to ensure you get the best experience on our website.