MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation
A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation
A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation
A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation
Journal Article

A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation

2011
Request Book From Autostore and Choose the Collection Method
Overview
This article proposes a constrained ℓ 1 minimization method for estimating a sparse inverse covariance matrix based on a sample of n iid p-variate random variables. The resulting estimator is shown to have a number of desirable properties. In particular, the rate of convergence between the estimator and the true s-sparse precision matrix under the spectral norm is when the population distribution has either exponential-type tails or polynomial-type tails. We present convergence rates under the elementwise ℓ ∞ norm and Frobenius norm. In addition, we consider graphical model selection. The procedure is easily implemented by linear programming. Numerical performance of the estimator is investigated using both simulated and real data. In particular, the procedure is applied to analyze a breast cancer dataset and is found to perform favorably compared with existing methods.